Question 8.8: A long strut AB of length L is of uniform section throughout...

A long strut AB of length L is of uniform section throughout. A thrust P is applied at the ends eccentrically, on the same side of the centre line with eccentricity at the end B twice than that at the end A. Show that the maximum bending moment occurs at a distance x from end A, where

tanλx=2cosλLsinλL and λ=PEI \tan \lambda x=\frac{2-\cos \lambda L}{\sin \lambda L} \text { and } \lambda=\sqrt{\frac{P}{E I}}

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Assuming the column to be fundamental one (i.e., pinned at both ends) with eccentric load at both ends, we show the schematic structural diagram of the column in Figure 8.21(a).
In Figure 8.21(a), we represent the eccentricity at ends A and B as ε and 2ε, respectively. In Figure 8.21(b), we represent the free-body diagram of the entire column while in Figure 8.21(c), we show the free-body diagram of the column of a section cut out at a distance x (0 ≤ x ≤ L) from end A. In Figure 8.21(c), axial force Nx N_{x} , shear force Vx V_{x} and bending moment Mx M_{x} are shown in their positive senses.

Now, from Figure 8.21(b), for equilibrium ( note ΣFx=0 and ΣFy=0 \left(\text { note } \Sigma F_x=0 \text { and } \Sigma F_y=0\right. have automatically been satisfied), we must have:

Mz=0QL=Pε \sum M_z=0 \Rightarrow Q L=P \varepsilon

or        Q=PεL Q=\frac{P \varepsilon}{L}          (1)

Again from Figure 8.21(c):

Mz=0Mx=Pε+Py+Qx \sum M_z=0 \Rightarrow M_x=P \varepsilon+P y+Q x

where y is the depression of the column at a distance x from end A [as shown in Figure 8.21(b) above].
Therefore, from flexure equation:

(EI)d2ydx2=Mx=PyQxPε (E I) \frac{ d ^2 y}{ d x^2}=-M_x=-P y-Q x-P \varepsilon

or        d2ydx2=PEIyQEIx(PEI)ε \frac{ d ^2 y}{ d x^2}=\left\lgroup -\frac{P}{E I} \right\rgroup y-\left\lgroup \frac{Q}{E I} \right\rgroup x-\left(\frac{P}{E I}\right) \varepsilon

or        d2ydx2+λ2y=λ2ελ2QPx( where λ2=P/EI) \frac{ d ^2 y}{ d x^2}+\lambda^2 y=-\lambda^2 \varepsilon-\lambda^2 \frac{Q}{P} x \quad\left(\text { where } \lambda^2=P / E I\right)

or      d2ydx2+λ2y=λ2QPx+ε \frac{ d ^2 y}{ d x^2}+\lambda^2 y=-\lambda^2\left\lgroup \frac{Q}{P} x+\varepsilon \right\rgroup            (2)

Clearly, the above is a second-order non-homogeneous linear differential equation and will have complementary function and particular integral as its solution components. Therefore,

y=(A1cosλx+A2sinλx)(QPx+ε) y=\left(A_1 \cos \lambda x+A_2 \sin \lambda x\right)-\left(\frac{Q}{P} x+\varepsilon\right)              (3)

where A1 and A2 A_1 \text { and } A_2 are the two arbitrary constants to be determined from the geometric boundary conditions of the problem. Obviously, we have at x = 0, y = 0 and at x = L, y = 0. Thus, from Eq. (3), we get

A1ε=0A1=ε A_1-\varepsilon=0 \Rightarrow A_1=\varepsilon            (4)

and      εcosλL+A2sinλLQLPε=0 \varepsilon \cos \lambda L+A_2 \sin \lambda L-\frac{Q L}{P}-\varepsilon=0

But from Eq. (1), QL/P = ε. Thus, the above expression becomes

εcosλL+A2sinλL2ε=0 \varepsilon \cos \lambda L+A_2 \sin \lambda L-2 \varepsilon=0

A2=ε(2cosλL)sinλL A_2=\frac{\varepsilon(2-\cos \lambda L)}{\sin \lambda L}          (5)

Now, from Eq. (3), we obtain

y=ε[cosλx+2cosλLsinλLsinλxxL1] y=\varepsilon\left[\cos \lambda x+\left\lgroup \frac{2-\cos \lambda L}{\sin \lambda L} \right\rgroup \sin \lambda x-\frac{x}{L}-1\right]            (6)

This is the equation of the elastic line of the column. Now, bending moment at any distance x is

Mx=Py+Pε+Qx M_x=P y+P \varepsilon+Q x

or        Mx=P[y+ε+εxL] M_x=P\left[y+\varepsilon+\frac{\varepsilon x}{L}\right]       [as QL = Pε by Eq. (1)]

Putting expression of y from Eq. (6) above, we get

Mx=Pε[cosλx+2cosλLsinλLsinλx] M_x=P \varepsilon\left[\cos \lambda x+\left\lgroup\frac{2-\cos \lambda L}{\sin \lambda L} \right\rgroup \sin \lambda x\right]           (7)

For Mx M_x to be maximum, clearly cosλx+[(2cosλL)/sinλL]sinλx\cosλ x +[(2 – \cos λL)/ \sinλL] \sin λ x is to be maximum, that is, when

ddx{cosλx+(2cosλLsinλL)sinλx}=0 \frac{ d }{ d x}\left\{\cos \lambda x+\left(\frac{2-\cos \lambda L}{\sin \lambda L}\right) \sin \lambda x\right\}=0

or        sinλx+(2cosλLsinλL)cosλx=0 -\sin \lambda x+\left(\frac{2-\cos \lambda L}{\sin \lambda L}\right) \cos \lambda x=0

or          tanλx=2cosλLsinλL (where λ2=P/EI )  \tan \lambda x=\left\lgroup \frac{2-\cos \lambda L}{\sin \lambda L} \right\rgroup \quad \text { (where } \lambda^2=P / E I \text { ) }

Alternative Solution: Let (2 – cosλL)/sinλL = p. Now,

cosλx+2cosλLsinλLsinλx=cosλx+psinλx=1+p2sin(λx+θ) \begin{aligned} \cos \lambda x+\left\lgroup \frac{2-\cos \lambda L}{\sin \lambda L} \right\rgroup \sin \lambda x & =\cos \lambda x+p \sin \lambda x \\ & =\sqrt{1+p^2} \sin (\lambda x+\theta) \end{aligned}

where tan θ= 1/p. Therefore, cosλ x + p sinλ x is maximum, that is, 1 when

λx+θ=π2 \lambda x+\theta=\frac{\pi}{2}

or          λx=π2θ \lambda x=\frac{\pi}{2}-\theta

or        tanλx=cotθ=p=2cosλLsinλL (as before)  \tan \lambda x=\cot \theta=p=\frac{2-\cos \lambda L}{\sin \lambda L} \quad \text { (as before) }

8.21

Related Answered Questions