Question 11.9: Evaluate limn→∞∫0^n (1 − x/n)^n e^−2x dx. (11.29)
Evaluate
\underset{n→∞}{\lim} \int_{0}^{n}{\left(1 − \frac{x}{n}\right)^{n} e^{−2x}} dx. (11.29)
Learn more on how we answer questions.
To express (11.29) as a Lebesgue integral, we define
f_{n}(x) = χ_{[0,n]}(x) · \left(1 − \frac{x}{n}\right)^{n} e^{−2x},
so that
\int_{0}^{n}{\left(1 − \frac{x}{n}\right)^{n} e^{−2x}} dx = \int_{[0,∞)}{f_{n}} dm.
Noting that |f_{n}(x)| ≤ e^{−2x} for all n ∈ \mathbb{N}, x ≥ 0, and that \int_{[0,∞)}{e^{−2x}}dm can be evaluated as an improper Riemann integral,
\int_{[0,∞)}{e^{−2x}}dm = \underset{n→∞}{\lim} \int_{0}^{n}{e^{−2x}} dx = \frac{1}{2},
we can apply the dominated convergence theorem to obtain
\underset{n→∞}{\lim} \int_{0}^{n}{\left(1 − \frac{x}{n}\right)^{n} e^{−2x}} dx = \int_{[0,∞)}{\underset{n→∞}{\lim}f_{n}} dm
= \int_{[0,∞)} e^{−3x} dx
= \frac{1}{3}.