Question 9.14: Calculate the maximum in-plane normal strain if the followin...

Calculate the maximum in-plane normal strain if the following strains have been obtained by the use of the rosette shown in the Figure 9.42:

∈_1=-50 \mu, \quad ∈_2=+360 \mu \text { and } ∈_3=+315 \mu

9.42
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We know that

∈_{\theta \theta}=\bar{∈}+∈_{ V } \cos 2 \theta+\frac{\gamma_{x y}}{2} \sin 2 \theta

where \bar{∈}=\left(∈_{x x}+∈_{y y}\right) / 2 ; ∈_{ V }=\left(∈_{x x}-∈_{y y}\right) / 2 . Now putting θ = 45°, 180° and 135°, we get

∈_1=\left\lgroup\bar{∈}+\frac{\gamma_{x y}}{2} \right\rgroup              (1)

∈_2=\bar{∈}+∈_{ V }=∈_{x x}           (2)

and        ∈_3=\left\lgroup\bar{∈}-\frac{\gamma_{x y}}{2} \right\rgroup               (3)

So from Eqs. (1) and (3),

2 \bar{∈}=∈_{x x}+∈_{y y}=\left(∈_1+∈_3\right)

and    \gamma_{x y}=\left(∈_1+∈_3\right)

Again from Eq. (2),

∈_{y y}=\left(∈_1+∈_3-∈_2\right)

Thus, we get

\begin{aligned} & ∈_{x x}=∈_2=+360 \mu \\ & ∈_{y y}=\left(∈_1+∈_3-∈_2\right)=-95 \mu \end{aligned}

and          \gamma_{x y}=-365 \mu

Thus, the maximum in-plane normal strain is given by

\begin{aligned} ∈_{\max } & =\frac{1}{2}\left(∈_{x x}-∈_{y y}\right)+\frac{1}{2} \sqrt{\left(∈_{x x}+∈_{y y}\right)^2+\gamma_{x y}^2} \\ & =\frac{1}{2}(360-95)+\frac{1}{2} \sqrt{(360+95)^2+(-365)^2} \\ & =424.15 \mu \end{aligned}

Related Answered Questions

Question: 9.11

Verified Answer:

Mohr’s circle for the strain is shown in Figure 9....