Question 4.12: BALANCING AN EQUATION FOR A REACTION IN BASE Aqueous sodium ...

BALANCING AN EQUATION FOR A REACTION IN BASE

Aqueous sodium hypochlorite (NaOCl; household bleach) is a strong oxidizing agent that reacts with chromite ion [Cr(OH)_{4}^{-}] in basic solution to yield chromate ion (CrO_{4}^{2-}) and chloride ion. The net ionic equation is

ClO^{-}(aq)  +  Cr(OH)_{4}^{-}(aq)  →  CrO_{4}^{2-}(aq)  +  Cl^{-}(aq)            Unbalanced

Balance the equation using the half-reaction method.

STRATEGY
Follow the steps outlined in Figure 4.4.

fig 4.4
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Steps 1 and 2. The unbalanced net ionic equation shows that chromium is oxidized (from +3 to +6) and chlorine is reduced (from +1 to -1). Thus, we can write the following half-reactions:

Oxidation half-reaction:           Cr(OH)_{4}^{-}(aq)  →  CrO_{4}^{2-}(aq)

Reduction half-reaction:         ClO^{-}(aq)  →  Cl^{-}(aq)

Step 3. The half-reactions are already balanced for atoms other than O and H.

Step 4. Balance both half-reactions for O by adding H_{2}O to the sides with less O, and then balance both for H by adding H^{+} to the sides with less H:

Oxidation:            Cr(OH)_{4}^{-}(aq)  →  CrO_{4}^{2-}(aq)  +  4  H^{+}(aq)

Reduction:          ClO^{-}(aq)  +  2  H^{+}(aq)  →  Cl^{-}(aq)  +  H_{2}O(l)

Step 5. Balance both half-reactions for charge by adding electrons to the sides with the greater positive charge:

Oxidation:        Cr(OH)_{4}^{-}(aq)  →  CrO_{4}^{2-}(aq)  +  4  H^{+}(aq)  +  3  e^{-}

Reduction:       ClO^{-}(aq)  +  2  H^{+}(aq)  +  2  e^{-}  →  Cl^{-}(aq)  +  H_{2}O(l)

Next, multiply the half-reactions by factors that make the electron count in each the same. The oxidation half-reaction must be multiplied by 2, and the reduction half-reaction must be multiplied by 3 to give 6 e^{-} in both:

Oxidation:      2 × [Cr(OH)_{4}^{-}(aq)  →  CrO_{4}^{2-}(aq)  +  4  H^{+}(aq)  +  3  e^{-}]

or      2 Cr(OH)_{4}^{-}(aq)  →  2  CrO_{4}^{2-}(aq)  +  8  H^{+}(aq)  +  6  e^{-}

Reduction: 3 × [ClO^{-}(aq)  +  2  H^{+}(aq)  +  2  e^{-}  →  Cl^{-}(aq)  +  H_{2}O(l)]

or      3 ClO^{-}(aq)  +  6  H^{+}(aq)  +  6  e^{-}  →  3  Cl^{-}(aq)  +  3  H_{2}O(l)

Step 6. Add the balanced half-reactions:

2 Cr(OH)_{4}^{-}(aq)  →  2  CrO_{4}^{2-}(aq)  +  8  H^{+}(aq)  +  6  e^{-}

\underline{3  ClO^{-}(aq)  +  6  H^{+}(aq)  +  6  e^{-}  →  3  Cl^{-}(aq)  +  3  H_{2}O(l)}

2  Cr(OH)_{4}^{-}(aq)  +  3  ClO^{-}(aq)  +  6  H^{+}(aq)  +  6  e^{-}  →  2  CrO_{4}^{2-}(aq)  +  3  Cl^{-}(aq)  +  3  H_{2}O(l)  +  8  H^{+}(aq)  +  6  e^{-}

Now, cancel the species that appear on both sides of the equation:

2  Cr(OH)_{4}^{-}(aq)  +  3  C1O^{-}(aq)  →  2  CrO_{4}^{2-}(aq)  +  3  C1^{-}(aq)  +  3  H_{2}O(l)  +  2  H^{+}(aq)

Finally, since we know that the reaction takes place in basic solution, we must add 2 OH^{-} ions to both sides of the equation to neutralize the 2  H^{+} ions on the right, giving 2 additional H_{2}O. The final net ionic equation, balanced for both atoms and charge, is
2  Cr(OH)_{4}^{-}(aq)  +  3  ClO^{-}(aq)  +  2  OH^{-}(aq)  →  2  CrO_{4}^{2-}(aq)  +  3  C1^{-}(aq)  +  5  H_{2}O(l)

Charge: (2 × -1) + (3 × -1) + (2 × -1) = -7          Charge: (2 × -2) + (3 × -1) = -7

Related Answered Questions