Let us consider the free-body diagrams of the bar assuming a fictitious load Q (vertical) and a moment Mo at end B and that of an arbitrary section defined by the angle ϕ as shown in Figures 10.60(a) and (b), respectively:
From Figure 10.60(b), taking moment about C, we get the bending moment Mx of the arbitrary section as follows:
Mx=PR(1−cosϕ)+QRsinϕ+Mo;0≤ϕ≤π/2
Now,
θB=⎩⎪⎧∂Mo∂U⎭⎪⎫Mo=0=⎩⎪⎧EI1⎭⎪⎫[∫0π/2Mx⎩⎪⎧∂Mo∂Mx⎭⎪⎫R dϕ]Mo=0
as differential length of bar, ds=R dϕ.So
θB=⎩⎪⎪⎧EI1⎭⎪⎪⎫[∫0π/2PR2(1−cosϕ)dϕ]=⎩⎪⎪⎪⎧EIPR2⎭⎪⎪⎪⎫[ϕ−sinϕ]0π/2=⎩⎪⎪⎪⎧EIPR2⎭⎪⎪⎪⎫[2π−1]
or θB=2EI(π−2)PR2⦪
Again vertical component of displacement of end B of the curved bar is
(δv)B=⎩⎪⎧∂Q∂U⎭⎪⎫Q=0
Considering Mo=0, we get
(δv)B=⎩⎪⎧EI1⎭⎪⎫[∫0π/2Mx∂Q∂Mx(R dϕ)]Q=0
=⎩⎪⎪⎧EI1⎭⎪⎪⎫[∫0π/2PR3(1−cosϕ)sinϕ dϕ]=⎩⎪⎪⎪⎧EIPR3⎭⎪⎪⎪⎫[∫0π/2⎩⎪⎪⎧sinϕ−2sin2ϕ⎭⎪⎪⎫dϕ]=⎩⎪⎪⎪⎧EIPR3⎭⎪⎪⎪⎫[−cosϕ+4cos2ϕ]0π/2=⎩⎪⎪⎪⎧EIPR3⎭⎪⎪⎪⎫[1+⎩⎪⎪⎧4−1−41⎭⎪⎪⎫]=EIPR3⎩⎪⎪⎧1−21⎭⎪⎪⎫
Therefore,
(δv)B=2EIPR3(↓)
Finally, horizontal component of displacement of end B of the curved bar is
(δh)B=∂P∂U, considering Q=Mo=0
Therefore,
(δh)B=⎩⎪⎪⎧EI1⎭⎪⎪⎫∫0π/2 Mx⎩⎪⎪⎧∂P∂Mx⎭⎪⎪⎫(R dϕ)=⎩⎪⎪⎧EI1⎭⎪⎪⎫∫0π/2PR3(1−cosϕ)2dϕ=⎩⎪⎪⎪⎧EIPR3⎭⎪⎪⎪⎫∫0π/2(1−2cosϕ+cos2ϕ)dϕ=⎩⎪⎪⎪⎧EIPR3⎭⎪⎪⎪⎫∫0π/2⎩⎪⎪⎧23−2cosϕ+2cos2ϕ⎭⎪⎪⎫dϕ=⎩⎪⎪⎪⎧EIPR3⎭⎪⎪⎪⎫[23ϕ−2sinϕ+4sin2ϕ]0π/4=⎩⎪⎪⎪⎧EIPR3⎭⎪⎪⎪⎫⎩⎪⎪⎧43π−2⎭⎪⎪⎫=4EI(3π−8)PR3
Thus,
(δh)B=4EI(3π−8)PR3(→)