Question 10.29: A thin curved bar AB has a centreline in the form of a quart...

A thin curved bar AB has a centreline in the form of a quarter circle of radius R as shown in Figure 10.59. Find δh,δv \delta_h, \delta_v  and angular rotation θ of end B.

10.59
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Let us consider the free-body diagrams of the bar assuming a fictitious load Q (vertical) and a moment Mo M_{ o } at end B and that of an arbitrary section defined by the angle ϕ \phi as shown in Figures 10.60(a) and (b), respectively:

From Figure 10.60(b), taking moment about C, we get the bending moment Mx M_x of the arbitrary section as follows:

Mx=PR(1cosϕ)+QRsinϕ+Mo;0ϕπ/2 M_x=P R(1-\cos \phi)+Q R \sin \phi+M_{ o } ; \quad 0 \leq \phi \leq \pi / 2

Now,

θB=UMoMo=0=1EI[0π/2MxMxMoR dϕ]Mo=0 \theta_{ B }=\left\lgroup\frac{\partial U}{\partial M_{ o }} \right\rgroup_{M_{ o }=0}=\left\lgroup\frac{1}{E I} \right\rgroup\left[\int_0^{\pi / 2} M_x\left\lgroup\frac{\partial M_x}{\partial M_{ o }} \right\rgroup R  d \phi\right]_{M_{ o }=0}

as differential length of bar, ds=R dϕ.So d s=R  d \phi . So

θB=1EI[0π/2PR2(1cosϕ)dϕ]=PR2EI[ϕsinϕ]0π/2=PR2EI[π21] \begin{aligned} \theta_{ B } & =\left\lgroup \frac{1}{E I}\right\rgroup\left[\int_0^{\pi / 2} P R^2(1-\cos \phi) d \phi\right]=\left\lgroup \frac{P R^2}{E I}\right\rgroup [\phi-\sin \phi]_0^{\pi / 2} \\ & =\left\lgroup \frac{P R^2}{E I}\right\rgroup\left[\frac{\pi}{2}-1\right] \end{aligned}

or        θB=(π2)PR22EI \theta_{ B }=\frac{(\pi-2) P R^2}{2 E I}

Again vertical component of displacement of end B of the curved bar is

(δv)B=UQQ=0 \left(\delta_{ v }\right)_{ B }=\left\lgroup \frac{\partial U}{\partial Q} \right\rgroup_{Q=0}

Considering Mo=0 M_{ o }=0 , we get

(δv)B=1EI[0π/2MxMxQ(R dϕ)]Q=0 \left(\delta_{ v }\right)_{ B }=\left\lgroup \frac{1}{E I} \right\rgroup\left[\int_0^{\pi / 2} M_x \frac{\partial M_x}{\partial Q}(R  d \phi)\right]_{Q=0}

=1EI[0π/2PR3(1cosϕ)sinϕ dϕ]=PR3EI[0π/2sinϕsin2ϕ2dϕ]=PR3EI[cosϕ+cos2ϕ4]0π/2=PR3EI[1+1414]=PR3EI112 \begin{aligned} & =\left\lgroup \frac{1}{E I} \right\rgroup\left[\int_0^{\pi / 2} P R^3(1-\cos \phi) \sin \phi  d \phi\right] \\ & =\left\lgroup \frac{P R^3}{E I} \right\rgroup\left[\int_0^{\pi / 2}\left\lgroup \sin \phi-\frac{\sin 2 \phi}{2} \right\rgroup d \phi\right] \\ & =\left\lgroup \frac{P R^3}{E I} \right\rgroup\left[-\cos \phi+\frac{\cos 2 \phi}{4}\right]_0^{\pi / 2} \\ & =\left\lgroup \frac{P R^3}{E I} \right\rgroup\left[1+\left\lgroup \frac{-1}{4}-\frac{1}{4} \right\rgroup\right]=\frac{P R^3}{E I}\left\lgroup 1-\frac{1}{2} \right\rgroup \end{aligned}

Therefore,

(δv)B=PR32EI() \left(\delta_{ v }\right)_{ B }=\frac{P R^3}{2 E I}(\downarrow)

Finally, horizontal component of displacement of end B of the curved bar is

(δh)B=UP, considering Q=Mo=0 \left(\delta_{ h }\right)_{ B }=\frac{\partial U}{\partial P}, \text { considering } Q=M_{ o }=0

Therefore,

(δh)B=1EI0π/2 MxMxP(R dϕ)=1EI0π/2PR3(1cosϕ)2dϕ=PR3EI0π/2(12cosϕ+cos2ϕ)dϕ=PR3EI0π/2322cosϕ+cos2ϕ2dϕ=PR3EI[32ϕ2sinϕ+sin2ϕ4]0π/4=PR3EI3π42=(3π8)PR34EI \begin{aligned} \left(\delta_{ h }\right)_{ B } & =\left\lgroup \frac{1}{E I} \right\rgroup\int_0^{\pi / 2}  M_x\left\lgroup \frac{\partial M_x}{\partial P} \right\rgroup (R  d \phi) \\ & =\left\lgroup \frac{1}{E I} \right\rgroup \int_0^{\pi / 2} P R^3(1-\cos \phi)^2 d \phi \\ & =\left\lgroup \frac{P R^3}{E I} \right\rgroup \int_0^{\pi / 2}\left(1-2 \cos \phi+\cos ^2 \phi\right) d \phi \\ & =\left\lgroup \frac{P R^3}{E I} \right\rgroup\int_0^{\pi / 2}\left\lgroup \frac{3}{2}-2 \cos \phi+\frac{\cos 2 \phi}{2} \right\rgroup d \phi \\ & =\left\lgroup \frac{P R^3}{E I} \right\rgroup\left[\frac{3}{2} \phi-2 \sin \phi+\frac{\sin 2 \phi}{4}\right]_0^{\pi / 4} \\ & =\left\lgroup \frac{P R^3}{E I} \right\rgroup\left\lgroup \frac{3 \pi}{4}-2 \right\rgroup =\frac{(3 \pi-8) P R^3}{4 E I} \end{aligned}

Thus,

(δh)B=(3π8)PR34EI() \left(\delta_{ h }\right)_{ B }=\frac{(3 \pi-8) P R^3}{4 E I}(\rightarrow)

10.60

Related Answered Questions

Question: 10.1

Verified Answer:

From Eq. (10.17), we can say U_i=\int_0^{L...
Question: 10.7

Verified Answer:

Let us calculate the reaction torques of the given...