Question 19.8: A current of 1.26 A is passed through an electrolytic cell c...

A current of 1.26  \text{A} is passed through an electrolytic cell containing a dilute sulfuric acid solution for 7.44  \text{h}. Write the half-cell reactions, and calculate the volume of gases generated at \text{STP}.

Strategy As shown in Figure 19.12, we can use current and time to determine charge. We can then convert charge to moles of electrons, and use the balanced half-reactions to determine how many moles of product form at each electrode. Finally, we can convert moles to volume.

Setup The half-cell reactions for the electrolysis of water are

Anode:           2\text{H}_2\text{O}(l) → \text{O}_2(\text{g}) + 4\text{H}^+(aq) + 4e^–

Cathode:          \underline{4\text{H}^+(aq) + 4e^– → 2\text{H}_2(\text{g})                                        }

Overall:                                     2\text{H}_2\text{O}(l) → \text{O}_2(\text{g}) + 2\text{H}_2(\text{g})

Remember that \text{STP} for gases means 273  \text{K} and 1  \text{atm}

19.12
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text{coulombs} = (1.26  \cancel{\text{A}})(7.44  \cancel{\text{h}}) \left(\frac{3600  \cancel{\text{s}}}{1  \cancel{\text{h}}} \right)  \left(\frac{1  \text{C}}{1  \cancel{\text{A ⋅ s}}}\right) = 3.375 × 10^4  \text{C}

At the anode:

\text{moles O}_2 = (3.375 × 10^4  \cancel{\text{C}}) \left(\frac{1  \cancel{\text{mol} e}} {96,500  \cancel{\text{C}}} \right)  \left(\frac{1  \text{mol O}_2}{4  \cancel{\text{mol} e}} \right) = 0.0874  \text{mol O}_2

The volume of 0.0874  \text{mol O}_2 at \text{STP} is given by

V = \frac{nRT}{P}

= \frac{(0.0874  \text{mol})(0.08206  \text{L ⋅ atm/K ⋅ mol})(273.15  \text{K})}{1  \text{atm}} = 1.96  \text{L O}_2

Similarly, for hydrogen we write

\text{moles H}_2 = (3.375 × 10^4  \cancel{\text{C}}) \left(\frac{1  \cancel{\text{mol} e}} {96,500  \cancel{\text{C}}} \right)  \left(\frac{1  \text{mol H}_2}{2  \cancel{\text{mol} e}} \right) = 0.175  \text{mol H}_2

The volume of 0.175  \text{mol H}_2 at \text{STP} is given by

V = \frac{nRT}{P}

= \frac{(0.175 \text{mol})(0.08206  \text{L ⋅ atm/K ⋅ mol})(273.15  \text{K})}{1  \text{atm}} = 3.92  \text{L H}_2

Related Answered Questions