Question 14.E.B: The apparatus in the figure can follow the course of an EDTA...

The apparatus in the figure can follow the course of an EDTA titration and was used to generate the curves in Figure 11-10. The heart of the cell is a pool of liquid Hg in contact with the solution and with a Pt wire. A small amount of HgY^{2−} added to the analyte equilibrates with a very tiny amount of Hg^{2+} :

Hg^{2+} + Y^{4−} \rightleftharpoons  HgY^{2−}

K_{f} = \frac{[HgY^{2−}]}{[Hg^{2+}][Y^{4−}]} = 10^{21.5}            (A)

The redox equilibrium Hg^{2+} + 2e^{−} \rightleftharpoons Hg(l) is established rapidly at the surface of the Hg electrode, so the Nernst equation for the cell can be written in the form

E = E_{+}  −  E_{−} = (0.852  −  \frac{0.059  16}{2}\log(\frac{1}{[Hg^{2+}]}))  −  E_{−}         (B)

where E_{−} is the constant potential of the reference electrode. From Equation A, [Hg^{2+}] = [HgY^{2−}] / K_{f}[Y^{4−}], and this can be substituted into Equation B to give

E = 0.852 − \frac{0.059  16}{2}\log(\frac{[Y^{4−}]K_{f}}{[HgY^{2−}]}) − E_{−}

= 0.852 − E_{−} − \frac{0.059  16}{2}\log(\frac{K_{f}}{[HgY^{2−}]}) − \frac{0.059  16}{2}\log[Y^{4−}]            (C)

where  K_{f} is the formation constant for HgY^{2−} . This apparatus thus responds to the changing EDTA concentration during an EDTA titration.

Suppose that you titrate 50.0 mL of 0.010 0 M MgSO_{4} with 0.020 0 M EDTA at pH 10.0, using the apparatus in the figure with an S.C.E. reference electrode. Analyte contains 1.0 × 10^{−4}Hg(EDTA)^{2−} added at the beginning of the titration. Calculate the cell voltage at the following volumes of added EDTA, and draw a graph of millivolts versus milliliters: 0, 10.0, 20.0, 24.9, 25.0, and 26.0 mL.

FIGURE 11-10
14B
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The cell voltage is given by Equation C, in which K_{f} is the formation constant for Hg(EDTA)^{−2}  (= 10^{21.5}). To find the voltage, we must calculate [HgY^{2−}] and [Y^{4−}] at each point. The concentration of HgY^{2−} is 1.0 × 10^{−4} M when V = 0 and is thereafter affected only by dilution because K_{f}(HgY^{2−}) \gg K_{f}(MgY^{2−}). The concentration of Y^{4−} is found from the Mg-EDTA equilibrium at all but the first point. At V = 0 mL, the Hg-EDTA equilibrium determines [Y^{4−}].

0 mL:   \frac{HgY^{2−}}{[Hg^{2+}][EDTA]} = α_{Y^{4−}}K_{f}(for  HgY^{4−}) = (0.30)(10^{21.5})

\frac{1.0 × 10^{−4}  −  x}{(x)(x)} = 9.5 × 10^{20} ⇒ x = [EDTA] = 3.2 × 10^{−13} M

[Y^{4−}] = α_{Y^{4−}}[EDTA] = 9.7 × 10^{−14} M

Using Equation C, we write

E = 0.852 − 0.241 − \frac{0.059  16}{2}\log\frac{10^{21.5}}{1.0 × 10^{−4}} − \frac{0.059  16}{2}\log(9.7 × 10^{−14}) = 0.242 V

10.0 mL:    V_{e} = 25.0 mL, so \frac{10}{25} of Mg^{2+} is in the form MgY^{2−} , and \frac{15}{25} is in the form Mg^{2+}.

[Y^{4−}] = \frac{[MgY^{2−}]}{[Mg^{2+}]}/K_{f} (for  MgY^{2−}) = (\frac{10}{15})/6.2 × 10^{8} = 1.08 × 10^{−9} M

[HgY^{2−}] = \underset{Dilution  factor}{(\frac{50.0}{60.0})}(1.0 × 10^{−4}  M) = 8.33 × 10^{−5} M

E = 0.852 − 0.241 − \frac{0.059  16}{2}\log\frac{10^{21.5}}{8.33 × 10^{−5}} − \frac{0.059  16}{2}\log(1.08 × 10^{−9}) = 0.120 V

20.0 mL:    [Y^{4−}] = (\frac{20}{5})/6.2 × 10^{8} = 6.45 × 10^{−9} M

[HgY^{2−}] = (\frac{50.0}{70.0})(1.0 × 10^{−4}  M) = 7.14 × 10^{−5} M

⇒ E = 0.095 V

24.9 mL:    [Y^{4−}] = (\frac{24.9}{0.1})/6.2 × 10^{8} = 4.02 × 10^{−7} M

[HgY^{2−}] = (\frac{50.0}{74.9})(1.0 × 10^{−4}  M) = 6.68 × 10^{−5} M

⇒ E = 0.041 V

25.0 mL:    This is the equivalence point, at which [Mg^{2+}] = [EDTA].

\frac{[MgY^{2−}]}{[Mg^{2+}][EDTA]} = α_{Y^{4−}}K_{f}(for   MgY^{2−})

\frac{(\frac{50.0}{75.0})(0.010  0)  −  x}{x²} = 1.85 × 10^{8} ⇒ x = 6.0 × 10^{−6} M

[Y^{4−}] = α_{Y^{4−}}(6.0 × 10^{−6}  M) = 1.80 × 10^{−6} M

[HgY^{2−}] = (\frac{50.0}{75.0})(1.0 × 10^{−4}  M) = 6.67 × 10^{−5} M

⇒ E = 0.021 V

26.0 mL:    Now there is excess EDTA in the solution.

[Y^{4−}] = α_{Y^{4−}}[EDTA] = (0.30)[(\frac{1.0}{76.0})(0.020  0  M)] = 7.89 × 10^{−5} M

[HgY^{2−}] = (\frac{50.0}{76.0})(1.0 × 10^{−4}  M) = 6.58 × 10^{−5} M

⇒ E = −0.027 V

Related Answered Questions

Question: 14.1

Verified Answer:

The titration reaction is Ag^{+} + Cl^{−} →...