Question 16.4: DETERMINING WHETHER A REACTION IS SPONTANEOUS Consider the o...

DETERMINING WHETHER A REACTION IS SPONTANEOUS

Consider the oxidation of iron metal:

4 Fe(s)+3 O2(g)  2 Fe2O3(s)4  Fe(s) + 3  O_{2}(g)  →  2  Fe_{2}O_{3}(s)

By determining the sign of ΔStotalΔS_{total}, show whether the reaction is spontaneous at 25 °C.

STRATEGY
To determine the sign of ΔStotal = ΔSsys + ΔSsurrΔS_{total}  =  ΔS_{sys}  +  ΔS_{surr}, we need to calculate the values of ΔSsys and ΔSsurrΔS_{sys}  and  ΔS_{surr} The entropy change in the system equals the standard entropy of reaction and can be calculated using the standard molar entropies in Table 16.1. To obtain ΔSsurrΔS_{surr} = -ΔH°/T , calculate ΔH° for the reaction from standard enthalpies of formation (Section 8.9).

TABLE 16.1 Standard Molar Entropies for Some Common Substances at 25 °C 

Substance                    Formula          S°[J/(K · mol)] Substance                Formula          S°[J/(K · mol)]
Gases

Acetylene                            C2H2C_{2}H_{2}                200.8

Ammonia                            NH3NH_{3}                  192.3

Carbon dioxide                  CO2CO_{2}                     213.6

Carbon monoxide             CO                     197.6

Ethylene                            C2H4C_{2}H_{4}                  219.5

Hydrogen                            H2H_{2}                      130.6

Methane                            CH4CH_{4}                      186.2

Nitrogen                             N2N_{2}                     191.5

Nitrogen dioxide              NO2NO_{2}                    240.0

Dinitrogen tetroxide        N2O4N_{2}O_{4}                 304.3

Oxygen                              O2O_{2}                       205.0

Liquids

Acetic acid                  CH3CO2HCH_{3}CO_{2}H             160

Ethanol                      CH3CH2OHCH_{3}CH_{2}OH           161

Methanol                    CH3OHCH_{3}OH                   127

Water                          H2OH_{2}O                       69.9

Solids

Calcium carbonate    CaCO3CaCO_{3}                   91.7

Calcium oxide            CaO                        38.1

Diamond                      C                             2.4

Graphite                       C                            5.7

Iron                             Fe                            27.3

Iron(III) oxide          Fe2O3Fe_{2}O_{3}                   87.4

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
ΔSsys = ΔS° = 2 S°(Fe2O3) – [4 S°(Fe) + 3 S°(O2)]ΔS_{sys}  =  ΔS°  =  2  S°(Fe_{2}O_{3})  –  [4  S°(Fe)  +  3  S°(O_{2})]

= (2 mol)(87.4JK  mol) – [(4 mol)(27.3JK  mol) + (3 mol)(205.0JK  mol)](2  mol)\left(87.4 \frac{J}{K  ·  mol} \right)  –  \left[(4  mol)\left(27.3 \frac{J}{K  ·  mol}\right)  +  (3  mol)\left(205.0 \frac{J}{K  ·  mol}\right)\right]

= -549.5 J/K

ΔH° = 2 ΔH°f(Fe2O3) – [4 ΔH°f(Fe) + 3 ΔH°f(O2)]ΔH°_{f}(Fe_{2}O_{3})  –  [4  ΔH°_{f}(Fe)  +  3  ΔH°_{f}(O_{2})]

Because ΔH°fΔH°_{f} = 0 for elements and ΔH°fΔH°_{f} = -824.2 kJ/mol for Fe2O3Fe_{2}O_{3} (Appendix B), ΔH° for the reaction is

ΔH° = 2 ΔH°f(Fe2O3)ΔH°_{f}(Fe_{2}O_{3}) = (2 mol)(-824.2 kJ/mol) = -1648.4 kJ

Therefore, at 25 °C = 298.15 K,

ΔSsurr = ΔH°T = (1,648,400 J)298.15 KΔS_{surr}  =  \frac{- ΔH°}{T}  =  \frac{-(-1,648,400  J)}{298.15  K} = 5529 J/K

ΔStotal = ΔSsys + ΔSsurrΔS_{total}  =  ΔS_{sys}  +  ΔS_{surr} = -549.5 J/K + 5529 J/K = 4980 J/K

Because the total entropy change is positive, the reaction is spontaneous under standardstate conditions at 25 °C.

BALLPARK CHECK
Since the reaction consumes 3 mol of gas, ΔSsysΔS_{sys} is negative. Because the oxidation (burning) of iron metal is highly exothermic, ΔSsurrΔS_{surr} = -ΔH°/T  is positive and very large. The value ΔSsurrΔS_{surr} of is greater than the absolute value of ΔSsysΔS_{sys} , and so ΔStotalΔS_{total} is positive, in agreement with the solution.

Related Answered Questions