Question 4.10: A 450-lb load hangs from the corner C of a rigid piece of pi......

A 450-lb load hangs from the corner C of a rigid piece of pipe ABCD which has been bent as shown. The pipe is supported by the ball-and-socket joints A and D, which are fastened, respectively, to the floor and to a vertical wall, and by a cable attached at the midpoint E of the portion BC of the pipe and at a point G on the wall. Determine (a) where G should be located if the tension in the cable is to be minimum, (b) the corresponding minimum value of the tension.

4.10.1
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Free-Body Diagram. The free-body diagram of the pipe includes the load W = (-450 lb)j, the reactions at A and D, and the force T exerted by the cable. To eliminate the reactions at A and D from the computations, we express that the sum of the moments of the forces about AD is zero. Denoting by λ the unit vector along AD, we write

\Sigma M_{A D}=0:\ \ \ \ \ \ L\cdot {(\overrightarrow{A E} }\times\mathrm{T)}\,+\,L \cdot(\overrightarrow{AC} \times\mathsf{W}\big)\,=0                                            (1)

The second term in Eq. (1) can be computed as follows:

{\overrightarrow{A C} }\times{{W}}=(12\mathrm{i}+\,12\mathrm{j})\,\times\,(-450\mathrm{j})\,=\,-5400\mathrm{k} \\ \\ L~=\frac{\overrightarrow{AD} }{AD} ~={\frac{12\mathrm{i}+12\mathrm{j}-\mathrm{6k}}{18}}={\frac{2}{3}}\mathrm{i}\,+\,{\frac{2}{3}}\mathrm{j}\,-\,{\frac{1}{3}}\mathrm{k} \\ \\ L\cdot({{{\overrightarrow{A C} }}}~\times~{ W})\,=\,(\textstyle{\frac{2}{3}}{\mathrm i}\,+\,\textstyle{\frac{2}{3}}\mathrm j\,-\,\textstyle{\frac{1}{3}}{\mathrm k})\,\cdot\,(-5400{\mathrm{k}})\,=\,+\,1800

Substituting the value obtained into Eq. (1), we write

L\cdot({{\overrightarrow{{A E}} }}\times{{{T}}})=-1800\;\ \mathrm{lb}\cdot\mathrm{ft}                                          (2)

Minimum Value of Tension. Recalling the commutative property for mixed triple products, we rewrite Eq. (2) in the form

{T}\cdot(L\times\overrightarrow{{A E}} )=-1800\,\mathrm{lb}\cdot\mathrm{ft}                                (3)

which shows that the projection of T on the vector L\times\overrightarrow{{A E}} is a constant. It follows that T is minimum when parallel to the vector

L\times\overrightarrow{{A E}}=(\textstyle{{\frac{2}{3}}}\mathrm i ~{{+}}\textstyle{\frac{2}{3}}\mathrm{{J}}-\textstyle{\frac{1}{3}}\mathrm{{k}})\times (\mathsf{6\mathrm i+12\mathrm j})=4{\mathrm i}-2\mathrm{j}+4{\mathrm{k}}

Since the corresponding unit vector is {\textstyle\frac{2}{3}}\mathrm{i}\,-\,{\frac{1}{3}}\mathrm{j}\,+\,{\frac{2}{3}}\mathrm{k}, we write

{T}_{\mathrm{min}}=T(\textstyle{\frac{2}{3}}\mathrm{i}\,-\,\textstyle{\frac{1}{3}}\mathrm{j}\,+\,\textstyle{\frac{2}{3}}{\mathrm k})                                                        (4)

Substituting for T and L\times\overrightarrow{{A E}} in Eq. (3) and computing the dot products, we obtain 6T = -1800 and, thus, T = -300. Carrying this value into (4), we obtain

{T}_{\mathrm{min}}=\,-200\mathrm{i}\,+\,100\mathrm{j}\,-\,200\mathrm{k}\qquad T_{\mathrm{min}}\,=\,300\ \mathrm{lb}

Location of G. Since the vector \overrightarrow{EG} and the force {T}_{\mathrm{min}} have the same direction, their components must be proportional. Denoting the coordinates of G by x, y, 0, we write

{\frac{x-6}{-200}}={\frac{y-12}{+100}}={\frac{0-6}{-200}}\quad\quad x=0\quad\quad y=15~\mathrm{ft}
4.10.2
Screenshot 2023-10-24 175306
Loading more images...

Related Answered Questions

Question: 4.6

Verified Answer:

Free-Body Diagram. The joist is a three-force body...