A force F has the components F_x=20 \text{lb}, F_y=-30 \text{lb} , and F_z=60 \text{lb} . Determine its magnitude F and the angles θ_x, θ_y, and θ_z it forms with the coordinate axes.
You can obtain the magnitude of F from formula (2.18):
F=\sqrt{F_x^2+F_y^2+F_z^2} (2.18)
\begin{aligned}F & =\sqrt{F_x^2+F_y^2+F_z^2} \\& =\sqrt{(20 ~\mathrm{lb})^2+(-30 ~\mathrm{lb})^2+(60 ~\mathrm{lb})^2} \\& =\sqrt{4900 ~\mathrm{lb}}=70 ~\mathrm{lb}\end{aligned}
Substituting the values of the components and magnitude of F into Eqs. (2.25), the direction cosines are
\cos \theta_x=\frac{F_x}{F} \quad \cos \theta_y=\frac{F_y}{F} \quad \cos \theta_z=\frac{F_z}{F} (2.25)
\cos \theta_x=\frac{F_x}{F}=\frac{20 ~\mathrm{lb}}{70 ~\mathrm{lb}} \quad \cos \theta_y=\frac{F_y}{F}=\frac{-30 ~\mathrm{lb}}{70 ~\mathrm{lb}} \quad \cos \theta_z=\frac{F_z}{F}=\frac{60 ~\mathrm{lb}}{70 ~\mathrm{lb}}
Calculating each quotient and its arc cosine gives you
\theta_x=73.4^{\circ} \quad \theta_y=115.4^{\circ} \quad \theta_z=31.0^{\circ}
These computations can be carried out easily with a calculator.