A force of 500 N forms angles of 60°, 45°, and 120°, respectively, with the x, y, and z axes. Find the components F_x, F_y, \text { and } F_z of the force and express the force in terms of unit vectors.
Substitute F=500 \mathrm{~N}, \theta_x=60^{\circ}, \theta_y=45^{\circ}, \text { and } \theta_z=120^{\circ} formulas (2.19). The scalar components of F are then
F_x=F \cos \theta_x \quad F_y=F \cos \theta_y \quad F_z=F \cos \theta_z (2.19)
\begin{array}{l}F_x=(500 \mathrm{~N}) \cos 60^{\circ}=+250 \mathrm{~N} \\F_y=(500 \mathrm{~N}) \cos 45^{\circ}=+354 \mathrm{~N} \\F_z=(500 \mathrm{~N}) \cos 120^{\circ}=-250 \mathrm{~N}\end{array}
Carrying these values into Eq. (2.20), you have
\mathbf{F}=F_x \mathbf{i}+F_y \mathbf{j}+F_z \mathbf{k} (2.20)
\mathbf{F}=(250 \mathrm{~N}) \mathbf{i}+(354 \mathrm{~N}) \mathbf{j}-(250 \mathrm{~N}) \mathbf{k}
As in the case of two-dimensional problems, a plus sign indicates that the component has the same sense as the corresponding axis, and a minus sign indicates that it has the opposite sense.