Question 6.27: A schematic of a clutch-testing machine is shown. The steel ......

A schematic of a clutch-testing machine is shown. The steel shaft rotates at a constant speed ω. An axial load is applied to the shaft and is cycled from zero to P. The torque T induced by the clutch face onto the shaft is given by

T={\frac{f P(D+d)}{4}}

where D and d are defined in the figure and f is the coefficient of friction of the clutch face. The shaft is machined with S_{{y}}=800\,\mathrm{MPa} and S_{{ut}}=1000\,\mathrm{MPa}. The theoretical stress concentration factors for the fillet are 3.0 and 1.8 for the axial and torsional loading, respectively.

(a) Assume the load variation P is synchronous with shaft rotation. With f = 0.3, find the maximum allowable load P such that the shaft will survive a minimum of 10^{6} cycles with a factor of safety of 3. Use the modified Goodman criterion. Determine the corresponding factor of safety guarding against yielding.

(b) Suppose the shaft is not rotating, but the load P is cycled as shown. With f = 0.3, find the maximum allowable load P so that the shaft will survive a minimum of 10^{6} cycles with a factor of safety of 3. Use the modified Goodman criterion. Determine the corresponding factor of safety guarding against yielding.

pr. 6.27
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
S_{{y}}=800\,\,\mathrm{MPa},\,S_{u t}=1000\,\,\mathrm{MPa}

(a) From Fig. 6-20, for a notch radius of 3 mm and S_{u t}=1\;\mathrm{GPa},q\doteq0.92.

K_{f}=1+q(K_{t}-1)=1+0.92(3-1)=2.84

 

\sigma_{\mathrm{max}}=-K_{f}{\frac{4P}{\pi d^{2}}}=-{\frac{2.84(4)P}{\pi(0.030)^{2}}}=-4018P

 

\sigma_{m}=-\sigma_{a}={\frac{1}{2}}(-4018P)=-2009P

 

T=f P\left({\frac{D+d}{4}}\right)

 

T_{\mathrm{max}}=0.3P\left({\frac{0.150+0.03}{4}}\right)=0.0135P

From Fig. 6-21, q_{s}\doteq0.95. Also, K_{t s} is given as 1.8. Thus,

K_{f s}=1+q_{s}(K_{t s}-1)=1+0.95(1.8-1)=1.76

 

\tau_{\mathrm{max}}={\frac{16K_{f s}T}{\pi d^{3}}}={\frac{16(1.76)(0.0135P)}{\pi(0.03)^{3}}}=4482P

 

\tau_{a}=\tau_{m}={\frac{1}{2}}(4482P)=2241P

Eqs. (6-55) and (6-56):

\sigma_{a}^{\prime}=\left\{\left[(K_{f})_{\mathrm{bending}}(\sigma_{a})_{\mathrm{bending}}+(K_{f})_{\mathrm{axial}}{\frac{(\sigma_{a})_{\mathrm{axial}}}{0.85}}\right]^{2}+3\left[(K_{f s})_{\mathrm{torsion}}(\tau_{a})_{\mathrm{torsion}}\right]^{2}\right\}^{1/2}                       (6-55)

\sigma_{m}^{\prime}=\left\{\left[(K_{f})_{\mathrm{bending}}(\sigma_{m})_{\mathrm{bending}}+(K_{f})_{\mathrm{axial}}{{(\sigma_{m})_{\mathrm{axial}}}}\right]^{2}+3\left[(K_{f s})_{\mathrm{torsion}}(\tau_{m})_{\mathrm{torsion}}\right]^{2}\right\}^{1/2}                         (6-56)

\sigma_{a}^{\prime}=\sigma_{m}^{\prime}=\left[(\sigma_{a}/0.85)^{2}+3\tau_{a}^{2}\right]^{1/2}=\left[(-2009P/0.85)^{2}+3(2241P)^{2}\right]^{1/2}=4545P

 

S_{e}^{\prime}=0.5(1000)=500\,\mathrm{MPa}

 

k_{a}=4.51(1000)^{-0.265}=0.723

 

k_{b}=\left({\frac{30}{7.62}}\right)^{-0.107}=0.864

 

S_{e}=0.723(0.864)(500)=312.3{\mathrm{~MPa}}

Modified Goodman:      {\frac{\sigma_{a}^{\prime}}{S_{e}}}+{\frac{\sigma_{m}^{\prime}}{S_{u t}}}={\frac{1}{n}}

{\frac{4545P}{312.3(10^{6})}}+{\frac{4545P}{1000(10^{6})}}={\frac{1}{3}}\quad\Rightarrow\quad P=17.5(10^{3})\,\mathrm{N}=16.1\,\mathrm{kN}

Yield (conservative): n_{y}={\frac{S_{y}}{\sigma_{a}^{\prime}+\sigma_{m}^{\prime}}}

n_{y}={\frac{800(10^{6})}{2(4545)(17.5)(10^{3})}}=5.03

(actual):   \sigma_{\mathrm{max}}^{\prime}=\left(\sigma_{\mathrm{max}}^{2}+3\tau_{\mathrm{max}}^{2}\right)^{1/2}=\left[(-4018P)^{2}+3(4482P)^{2}\right]^{1/2}=8741\,P

n_{y}={\frac{S_{v}}{\sigma_{\mathrm{max}}^{\prime}}}={\frac{800(10^{6})}{8741(17.5)10^{3}}}=5.22

(b) If the shaft is not rotating,  \tau_{m}=\tau_{a}=0.

\sigma_{m}=\sigma_{a}=-2009P

 

k_{b}=1    (axial)

k_{c}=0.85     (Since there is no tension, k_{c}=1 might be more appropriate.)

S_{e}=0.723(1)(0.85)(500)=307.3\mathrm{~MPa}

 

n_{f}=\frac{307.3(10^{6})}{2009P}\quad\Rightarrow\quad P=\frac{307.3(10^{6})}{3(2009)}=51.0(10^{3})\,\mathrm{N}=51.0\,kN

Yield:      n_{y}={\frac{800(10^{6})}{2(2009)(51.0)(10^{3})}}=3.90

fig. 6.20
fig. 6.21
fig. 27
Loading more images...

Related Answered Questions

Question: 6.45

Verified Answer:

Peterson’s notch sensitivity q has very little sta...
Question: 6.37

Verified Answer:

For a non-rotating bar subjected to completely rev...
Question: 6.35

Verified Answer:

For completely reversed torsion, {k}_{a}[/l...