A sieve-plate column operating at atmospheric pressure is to produce nearly pure methanol from an aqueous feed containing 40 mole percent methanol. The distillate product rate is 5800 kg/h. (a) For a reflux ratio of 3.5 and a plate spacing of 18 in., calculate the allowable vapor velocity and the column diameter. (b) Calculate the pressure drop per plate if each sieve tray is \frac{1}{8} in. thick with \frac{1}{4}-in. holes on a \frac{3}{4}-in. triangular spacing and a weir height of 2 in. (c) What is the froth height in the downcomer?
Physical properties of methanol: Molecular weight is 32, normal boiling point is 65°C, and the density of vapor is
\rho_{V}={\frac{32\times273}{22.4\times338}}=1.15\mathrm{~kg/m}^{3}
From Perry, Chemical Engineers’ Handbook, 6th ed., p. 3-188, the density of liquid methanol is 810\,\mathrm{kg/m^{3}} at o°c and 792 kg/m³ at 20°C. At 65°C, the estimated density {{\rho}}_{L} is 750 kg/m³. Lange’s Handbook of Chemistry, 9th ed., 1956, p. 1650, gives the surface tension of methanol at 20 and 100°C. By interpolation, at 65°C, σ = 19 dyn/cm.
(a) Vapor velocity and column diameter In Fig. 18.28 the abscissa is
\frac{L}{V}\left(\frac{\rho_{V}}{\rho_{L}}\right)^{1/2}=\frac{3.5}{4.5}\left(\frac{1.15}{750}\right)^{1/2}=3.04\times10^{-2}
For 18-in. plate spacing,
K_{v}=0.29=u_{c}\biggl(\frac{\rho_{V}}{\rho_{V}-\rho_{L}}\biggr)^{1/2}\biggl(\frac{20}{\sigma}\biggr)^{0.2}
Allowable vapor velocity:
u_{c}=0.29\bigg(\frac{750-1.15}{1.15}\bigg)^{1/2}\bigg(\frac{19}{20}\bigg)^{0.2}
=7.32\,\mathrm{ft/s\;or\;2.23\;m/s}
Vapor flow rate:
V = D(R + 1) = 4.5D
={\frac{5800\times4.5}{3600\times1.15}}=6.30\ m^{3}/s
Cross-sectional area of column:
Bubbling area= 6.30/2.23 = 2.83 m²
If the bubbling area is 0.7 of the total column area,
Column area= 2.83/0.7 = 4.04 m²
Column diameter:
D_{c}=\left({\frac{4\times4.04}{\pi}}\right)^{1/2}=2.27\,\mathrm{m}
(b) Pressure drop The plate area of one unit of three holes on a triangular {\frac{3}{4}}\mathbf{i{n}} pitch is {{\frac{1}{2}}}\times{\frac{3}{4}}({\frac{3}{4}}\times{\sqrt{3}}/2)=9{\sqrt{3}}/64{}{\mathrm{~in}}^{2}. The hole area in this section (half a hole) is \textstyle{\frac{1}{2}}\times\pi/4\times(_{4}^{1})^{2}=\pi/128\ \mathrm{in}\,^{2}. Thus the hole area is \pi/128\times64/9\sqrt{3}=0.1008, or 10.08 percent of the bubbling area.
Vapor velocity through holes:
u_{0}=2.23/0.1008=22.1~\mathrm{m/s}
Use Eq. (18.58) for the pressure drop through the holes. From Fig. 18.27, C_{0}=0.73. Hence
h_{d}=\left(\frac{u_{0}^{2}}{C_{0}^{2}}\right)\left(\frac{\rho_{V}}{2g\rho_{L}}\right)=51.0\left(\frac{u_{0}^{2}}{C_{0}^{2}}\right)\left(\frac{\rho_{V}}{\rho_{L}}\right) (18.85)
h_{d}={\frac{51.0\times22.1^{2}\times1.15}{0.73^{2}\times750}}=71.7\,\mathrm{mm\,methanol}
Head of liquid on plate:
Weir height: h_{\mathrm{w}}=2\times25.4=50.8\ \mathrm{mm}
Height of liquid above weir: Assume the downcomer area is 15 percent of the column area on each side of the column. From Perry, 6th ed., page 1-26, the chord length for such a segmental downcomer is 1.62 times the radius of the column, so
L_{w}=1.62\times2.23/2=1.81\ \mathrm{m}
Liquid flow rate:
q_{L}={\frac{5800\times4.5}{750\times60}}=0.58~{\mathrm{m}}^{3}/{\mathrm{min}}
From Eq. (18.60),
h_{o w}=43.4\left(\frac{q_{L}}{L_{w}}\right)^{2/3} (18.60)
h_{ow}=43.4(0.58/1.81)^{2/3}=20.3\;\mathrm{mm}
From Eq. (18.59), with β = 0.6,
h_{l}=\beta(h_{w}+h_{o w}) (18.59)
h_{l}=0.6(50.8+20.3)=42.7\,\mathrm{mm}
Total height of liquid [from Eq. (18.57)]:
h_t=h_d+h_l (18.57)
h_{t}=71.7+42.7=114.4{{ \ m m}}
(c) Froth height in downcomer Use Eq. (18.62). Estimate h_{f,L}=10 mm methanol. Then
Z_c=2 \beta\left(h_w+h_{o w}\right)+h_d+h_{f, L} (18.62)
Z_{c}=(2\times42.7)+71.7+10=167.1\,\mathrm{mm}
From Eq. (18.63),
Z={\frac{Z_{\circ}}{Φ_d}} (18.63)
Z=167.1/0.5=334\,\mathrm{mm}\,(13.2\,\mathrm{in})