Question 14.SP.3: A system consists of three particles A, B, and C, with masse......

A system consists of three particles A, B, and C, with masses m_{A} = 1~kg,~m_{B} = 2~kg,~and~m_{C} = 3\; kg. The velocities of the particles expressed in m/s are, respectively,\mathbf{v}_{A}=3\mathbf{i}-2\mathbf{j}+4\mathbf{k},\,\mathbf{v}_{B}=4\mathbf{i}+3\mathbf{j},\,\mathrm{and}\,\mathbf{v}_{C}=2\mathbf{i}+5\mathbf{j}-3\mathbf{k}. Determine (a) the angular momentum H_{O} of the system about O, (b) the position vector \overline{r} of the mass center G of the system, (c) the angular momentum H_{G} of the system about G.

1
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

STRATEGY: You have a system of particles, so use the definitions of angular momentum and center of mass.

MODELING: Choose the three particles as your system.

ANALYSIS: The linear momentum of each particle expressed in kg·m/s is

m_{A}\mathbf{v}_{A}=3\mathbf{i}-2\mathbf{j}+4\mathbf{k}

m_{B}\mathbf{v}_{B}=\mathrm{8i}+6\mathbf{j}

m_{C}\mathrm{v}_{C}=6\mathrm{i}+15\mathrm{j}-9\mathrm{k}

The position vectors (in meters) are

\mathbf{r}_{A}=3\mathbf{j}+\mathbf{k}\qquad\mathbf{r}_{B}=3\mathbf{i}+2.5\mathbf{k}\qquad\mathbf{r}_{C}=4\mathbf{i}+2\mathbf{j}+\mathbf{k}

a. Angular Momentum About O. Using the definition of angular momentum about O (in kg·m²/s), you find

\mathbf{H}_{O}=\mathbf{r}_{A}\times(m_{A}\mathbf{v}_{A})+\mathbf{r}_{B}\times(m_{B}\mathbf{v}_{B})+\mathbf{r}_{C}\times(m_{C}\mathbf{v}_{C})

=\left|\begin{array}{ccc}i & j & k \\0 & 3 & 1 \\3 & -2 & 4\end{array}\right|+\left|\begin{array}{ccc}i & j & k \\3 & 0 & 2.5 \\8 & 6 & 0\end{array}\right|+\left|\begin{array}{ccc}i & j & k \\ 4 & 2 & 1 \\ 6 & 15 & -9\end{array}\right|

= ( 14i + 3j − 9k) + ( −15i + 20j + 18k) + ( −33i + 42j + 48k)

= 34i + 65j + 57k

{\bf H}_{O}=-(34\mathrm{~kg\cdot m^{2}/s})i+(65\mathrm{~kg\cdot m^{2}/s})\mathbf{j}+(57\mathrm{~kg\cdot m^{2}/s})\mathbf{k}   ◂

b. Mass Center. Using the definition of mass center, you find

(m_{A}+m_{B}+m_{C})\mathbf{\bar{r}}=m_{A}\mathbf{r}_{A}+m_{B}\mathbf{r}_{B}+m_{C}\mathbf{r}_{C}

6{\bar{\mathbf{r}}} = ( 1 )( 3j + k) + ( 2 )( 3i + 2.5k) + ( 3 )( 4i + 2j + k)

\bar{\mathbf{r}} = 3i + 1.5j + 1.5k

\bar{\mathbf{r}} = ( 3.00 m )i + ( 1.500 m )j + ( 1.500 m )k ◂

c. Angular Momentum About G. The angular momentum of the system about G is

\mathrm{H}_{G}=\mathbf{r}_{\mathrm{A}}^{\prime}\times m_{A}\mathbf{v}_{A}+\mathbf{r}_{B}^{\prime}\times m_{B}\mathbf{v}_{B}+\mathbf{r}_{C}^{\prime}\times m_{C}\mathbf{v}_{C}

where \mathbf{r}_{A}^{\prime},\mathbf{r}_{B}^{\prime}{\mathrm{~and~}}\mathbf{r}_{C}^{\prime} are the position vectors from the particles to the center of mass; that is,

\mathbf{r}_{A}^{\prime}=\mathbf{r}_{A}-{\bar{\mathbf{r}}}=-3\mathbf{i}+1.5\mathbf{j}-0.5\mathbf{k}

\mathbf{r}_{B}^{\prime}=\mathbf{r}_{B}-{\bar{\mathbf{r}}}=-1.5{\mathbf{j}}+\mathbf{k}

\mathbf{r}_{C}^{\prime}=\mathbf{r}_{C}-{\bar{\mathbf{r}}}={{\mathbf{i}}}+0.5{{\mathbf{j}}}-0.5\mathbf{k}

Therefore, you can calculate the angular momentum as

\mathbf{H}_{G}=\mathbf{r}_{A}^{\prime}\times(m_{A}\mathbf{v}_{A})+\mathbf{r}_{B}^{\prime}\times(m_{B}\mathbf{v}_{B})+\mathbf{r}_{C}^{\prime}\times(m_{C}\mathbf{v}_{C})

=\left|\begin{array}{ccc}i & j & k \\-3 & 1.5 & -0.5 \\3 & -2 & 4\end{array}\right|+\left|\begin{array}{ccc}i & j & k \\0 & -1.5 & 1 \\8 & 6 & 0\end{array}\right|+\left|\begin{array}{ccc}i & j & k \\1 & 0.5 & -0.5 \\6 & 15 & -9\end{array}\right|

= ( 5i + 10.5j + 1.5k) + ( −6i + 8j + 12k) + ( 3i + 6j + 12k)

= 2i + 24.5j + 25.5k

\mathbf{H}_{G}=(2.00\ { kg}{\cdot}{{m}}^{2}/{{s}})\mathbf{i}+(24.5\ {kg}{\cdot}{{m}}^{2}/{{s}})\mathbf{j}+(25.5\ {{kg}}{\cdot}{{m}}^{2}/{{s}})\mathbf{k}  ◂

REFLECT and THINK: You should be able to verify that the answers to this problem satisfy the equations given in Prob. 14.27; that is, \mathbf{H}_{O}={\bar{\mathbf{r}}}\times m{\bar{\mathbf{v}}}+\mathbf{H}_{G}. Because no impulses act on the system, the linear momentum of the overall system is constant; the location of the center of mass of the system, however, changes with time.

Related Answered Questions