Question 10.2.1: Assume that there is a Fourier series converging to the func......

Assume that there is a Fourier series converging to the function f defined by

\begin{array}{c}{{f(x)= \begin{cases} -x, & -2\leq x\lt 0, \\ x, & 0\leq x\lt2; \end{cases} }}\\ {{f(x+4)=f(x).}}\end{array} (15)

Determine the coefficients in this Fourier series.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

This function represents a triangular wave (see Figure 10.2.2) and is periodic with period 4. Thus the Fourier series has the form

f(x)={\frac{a_{0}}{2}}+\sum_{m=1}^{\infty}\biggl(a_{m}\cos\biggl({\frac{m\pi x}{2}}\biggr)+b_{m}\sin\biggl({\frac{m\pi x}{2}}\biggr)\biggr), (16)

where the coefficients are computed from equations (13)

a_{n}=\frac{1}{L}\int_{-L}^{L}f(x)\cos\Bigl(\frac{n\pi x}{L}\Bigr)d x,\quad n=0,1,2,\dots\,. (13)

and (14)

b_{n}=\frac{1}{L}\int_{-L}^{L}f(x)\sin\Bigl(\frac{n\pi x}{L}\Bigr)d x,\quad n=1,2,3,\dots\,. (14)

with L = 2. Substituting for f(x) in equation (13) with m = 0, we have

a_{0}=\frac{1}{2}\int_{-2}^{0}(-x)d x+\frac{1}{2}\int_{0}^{2}x d x=1+1=2. (17)

For m > 0, equation (13) yields

a_{m}=\frac{1}{2}\int_{-2}^{0}(-x)\cos\biggl(\frac{m\pi x}{2}\biggr)d x+\frac{1}{2}\int_{0}^{2}x\cos\biggl(\frac{m\pi x}{2}\biggr)d x.

These integrals can be evaluated through integration by parts, with the result that

a_{m}=\left.\frac{1}{2}\left(-\frac{2}{m\pi}x\sin\left(\frac{m\pi x}{2}\right)-\left(\frac{2}{m\pi}\right)^{2}\cos\left(\frac{m\pi x}{2}\right)\right)\right|_{-2}^{0}\\ \left.+\frac{1}{2}\left(\frac{2}{m\pi}x\sin\left(\frac{m\pi x}{2}\right)+\left(\frac{2}{m\pi}\right)^{2}\cos\left(\frac{m\pi x}{2}\right)\right)\right|^{2}_{0}\\ ={\frac{1}{2}}\left(-\left({\frac{2}{m\pi}}\right)^{2}+\left({\frac{2}{m\pi}}\right)^{2}\cos(m\pi)+\left({\frac{2}{m\pi}}\right)^{2}\cos(m\pi)-\left({\frac{2}{m\pi}}\right)^{2}\right)\\ =\frac{4}{(m\pi)^{2}}(\cos(m\pi)-1),\quad m=1,\,2,\,\ldots \\ =\left\{ \begin{array}{c c}{{-\frac{8}{(m\pi)^{2},}}}&{{\text{m odd,}}}\\ {{0,}}&{{\text{m even.}}}\end{array}\right. (18)

Finally, from equation (14), it follows in a similar way that

b_{m}=0,\quad m=1,\,2,\,\dots\,. (19)

By substituting the coefficients from equations (17), (18), and (19) in the series (16), we obtain the Fourier series for f:

f(x)=1-{\frac{8}{\pi^{2}}}\Biggl(\cos\biggl({\frac{\pi x}{2}}\biggr)+{\frac{1}{3^{2}}}\cos\biggl({\frac{3\pi x}{2}}\biggr)+{\frac{1}{5^{2}}}\cos\biggl({\frac{5\pi x}{2}}\biggr)+\cdots\Biggr)\\=1-\frac{8}{\pi^{2}}\sum_{m=1,3,5,…}^{\infty}\frac{1}{m^{2}}\cos\left(\frac{m\pi x}{2}\right)\\=1-\frac{8}{\pi^{2}}\sum_{n=1}^{\infty}\frac{1}{(2n-1)^{2}}\cos\biggl(\frac{(2n-1)\pi x}{2}\biggr). (20)

FIGURE 10.2.2
Loading more images...

Related Answered Questions

Question: 10.1.4

Verified Answer:

The general solution is given by equation (11), [l...
Question: 10.1.3

Verified Answer:

The general solution of the differential equation ...
Question: 10.1.2

Verified Answer:

The general solution of this differential equation...
Question: 10.1.1

Verified Answer:

The general solution of the differential equation ...