Determine the components of the single couple equivalent to the two couples shown.
Our computations will be simplified if we attach two equal and opposite 20-lb forces at A . This enables us to replace the original 20-lb-force couple by two new 20-lb-force couples, one of which lies in the zx plane and the other in a plane parallel to the xy plane. The three couples shown in the adjoining sketch can be represented by three couple vectors M_ x \ , \ M _y \ , \ and \ M_ z directed along the coordinate axes. The corresponding moments are
\begin{array}{l l}{{M_{x}=\,-(30 \ \mathrm lb)(18\ \mathrm{in.})\,=\,-{5}40 \ \mathrm l{b~~\cdot\ \mathrm {in}.}}}\\ {{M_{y}=\,+(20 \ \mathrm lb)(12\ \mathrm{in.})\,=\,+240\ \mathrm lb\cdot\ \mathrm{in.}}}\\ {{M_{z}\,=\,+(20\ \mathrm lb)(9\ \mathrm{in.})\,=\,+180\ \mathrm lb \ {\mathrm{\cdot \ in.}}}}\end{array}
These three moments represent the components of the single couple M equivalent to the two given couples. We write
{M}\,=\,-(540 \ \mathrm { lb}\,\cdot\,\mathrm{in.})\mathrm{i}\,+\,(240 \ \mathrm{l b}\,\cdot\,\mathrm{in.})\mathrm{j}\,+\,(180 \ \mathrm{l b}\,\cdot\,\mathrm{in.})\mathrm{k}
Alternative Solution. The components of the equivalent single couple M can also be obtained by computing the sum of the moments of the four given forces about an arbitrary point. Selecting point D , we write
{M}={M}_{D}=(18\ {\mathrm{in}}.){{\mathrm{j}}}\times (-30 \ \mathrm{l b}){\mathrm k}\:+\:[(9\mathrm{~in.}){\mathrm j}\:-\:(12\mathrm{~in.}){\mathrm k}]{\times}\:(-20 \ \mathrm {lb}){\mathrm i}and, after computing the various cross products,
{ M}=\,-(540 \ \mathrm{l b}\cdot\mathrm{in}.){\mathrm i}\,+\,(240 \ \mathrm {l b}\cdot\mathrm{in}.){\mathrm j}\,+\,(180 \ \mathrm{l b}\cdot\mathrm{in}.){\mathrm k}\qquad \quad