Determine the moment of inertia of a right circular cone with respect to (a) its longitudinal axis, (b) an axis through the apex of the cone and perpendicular to its longitudinal axis, (c) an axis through the centroid of the cone and perpendicular to its longitudinal axis.
STRATEGY: For parts (a) and (b), choose a differential element of mass in the form of a thin circular disk perpendicular to the longitudinal axis of the cone. You can solve part (c) by an application of the parallel-axis theorem.
MODELING and ANALYSIS: Choose the differential element of mass shown in Fig. 1. Express the radius and mass of this disk as
r=a \frac{x}{h} \quad d m=\rho \pi r^2 d x=\rho \pi \frac{a^2}{h^2} x^2 d x
a. Moment of Inertia I_x. Using the expression derived in Sec. 9.5C for a thin disk, compute the mass moment of inertia of the differential element with respect to the x axis.
d I_x=\frac{1}{2} r^2 d m=\frac{1}{2}\left(a \frac{x}{h}\right)^2\left(\rho \pi \frac{a^2}{h^2} x^2 d x\right)=\frac{1}{2} \rho \pi \frac{a^4}{h^4} x^4 d x
Integrating from x = 0 to x = h gives you
I_x=\int d I_x=\int_0 ^h \frac{1}{2}\rho \pi \frac{a^4}{h^4} x^4 d x=\frac{1}{2} \rho \pi \frac{a^4}{h^4} \frac{h^5}{5} = \frac{1}{10} \rho \pi a^4 h
Since the total mass of the cone is m=\frac{1}{3} \rho \pi a^2 h, you can write this as
I_x=\frac{1}{10} \rho \pi a^4 h=\frac{3}{10} a^2\left(\frac{1}{3} \rho \pi a^2 h\right)=\frac{3}{10} m a^2 \quad I_x=\frac{3}{10} m a^2
b. Moment of Inertia I_y. Use the same differential element. Applying the parallel-axis theorem and using the expression derived in Sec. 9.5C for a thin disk, you have
d I_y=d I_{y^{\prime}}+x^2 d m=\frac{1}{4} r^2 d m+x^2 d m=\left(\frac{1}{4} r^2+x^2\right) d m
Substituting the expressions for r and dm into this equation yields
d I_y=\left(\frac{1}{4} \frac{a^2}{h^2} x^2+x^2\right)\left(\rho \pi \frac{a^2}{h^2} x^2 d x\right)=\rho \pi \frac{a^2}{h^2}\left(\frac{a^2}{4 h^2}+1\right) x^4 d x
I_y=\int d I_y=\int_0^h \rho \pi \frac{a^2}{h^2}\left(\frac{a^2}{4 h^2}+1\right) x^4 d x=\rho \pi \frac{a^2}{h^2}\left(\frac{a^2}{4 h^2}+1\right) \frac{h^5}{5}
Introducing the total mass of the cone m, you can rewrite I_y as
I_y=\frac{3}{5}(\frac{1}{4}a^2 + h^2) \frac{1}{3}\rho \pi a^2 h I_y=\frac{3}{5}m(\frac{1}{4}a^2 + h^2)
c. Moment of Inertia \bar{I}_{y^{\prime \prime}}. Apply the parallel-axis theorem to obtain
I_y=\bar{I}_{y^{\prime \prime}}+m \bar{x}^2
Solve for \bar{I}_{y^{\prime \prime}} and recall from Fig. 5.21 that \bar{x}=\frac{3}{4} h (Fig. 2). The result is
\bar{I}_{y^{\prime \prime}}=I_y-m \bar{x}^2=\frac{3}{5} m\left(\frac{1}{4} a^2+h^2\right)-m\left(\frac{3}{4} h\right)^2
\bar{I}_{y^{\prime \prime}}=\frac{3}{20} m\left(a^2+\frac{1}{4} h^2\right)
REFLECT and THINK: The parallel-axis theorem for masses can be just as useful as the version for areas. Don’t forget to use the reference figures for centroids of volumes when needed.