Establishing an identity
Establish the identity: {\frac{1-\sin\theta}{\cos\theta}}={\frac{\cos\theta}{1+\sin\theta}}
Start with the left side and multiply the numerator and the denominator by 1\,+\, \sin \theta. (Alternatively, we could multiply the numerator and the denominator of the right side by 1\,-\,\sin \theta.)
{\frac{1-\sin\theta}{\cos\theta}}={\frac{1-\sin\theta}{\cos\theta}}\cdot{\frac{1+\sin\theta}{1+\sin\theta}} Multiply the numerator and the denominator by
={\frac{1-\sin^{2}\theta}{\cos\theta(1+\sin\theta)}}={\frac{\cos^{2}\theta}{\cos\theta(1+\sin\theta)}}
={\frac{\cos \theta}{1+\sin\theta}} Divide out