(Expectation of an Exponential Random Variable) Let X be exponentially distributed with parameter λ. Calculate E[X].
Integrating by parts (d v=\lambda e^{-\lambda x},u=x) yields
E[X]=-x e^{-\lambda x}{\big|}_{0}^{\infty}+\int_{0}^{\infty}e^{-\lambda x}\,d x=0-{\frac{e^{-\lambda x}}{\lambda}}{\bigg|}_{0}^{\infty}
={\frac{1}{\lambda}}