Question P.173: Find lim n→∞ ∫0^∞ n cos( √^4 x/n²)/1 + n²x²dx. Idea. First, ......

Find \lim_{n→\infty} \frac{\int_0^{\infty} n \cos( \sqrt[4]{ x/n^2})}{1 + n^2x^2}dx.
Idea. First, we note that we cannot switch the limit and the integral, for if we could, we could start by showing that \lim_{n→\infty}\frac{ n \cos(\sqrt[4]{ x/n^2})}{1 + n^2x^2} = 0 for any nonzero x, and then conclude that the answer would be 0. This answer is incorrect, and a bit of numerical approximation using technology yields approximate values of the integral as follows:
n approximate value
3                               1.37144
5                                1.47507
200                            1.5704
2000                          1.57078
These values suggest that the limit might be π/2 ≈ 1.5708. To prove this, we note that once n gets large the integrand will be close to zero unless x is small. On the other hand, for values of x reasonably close to zero, \sqrt[4]{ x/n^2} should be close to zero, so \cos (\sqrt[4]{ x/n^2}) should be close to 1. Therefore, we can hope that the integral is close to \left.\int_0^{\infty} \frac{n dx}{1 + n^2x^2} = \arctan(nx)\right|_0^{\infty}= π/2.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

With the reasoning just presented, we see that it will be enough to show that

\lim_{n\rightarrow\infty}\left(\int_{0}^{\infty}{\frac{n\,d x}{1+n^{2}x^{2}}}-\int_{0}^{\infty}\,{\frac{\,\,n\,\cos\left({\sqrt[4]{x/n^{2}}}\,\right)\,}{1+n^{2}x^{2}}}\,d x\right)=0,

so we want to show that

\lim_{n\rightarrow\infty}\int_{0}^{\infty}\ {\frac{n\left(1-\cos\left({\frac{\sqrt[4]{x/n^{2}}}{1+n^{2}x^{2}}}\right)\right)}{1+n^{2}x^{2}}}\,d x\,=\,0.

.For this, note that

0\leq\int_{0}^{\infty}~\frac{n\left(1-\cos\left(\sqrt[4]{x/n^{2}}\right)\right)}{1+n^{2}x^{2}}\,d x=\int_{0}^{\infty}~\frac{2n\sin^{2}\left(\frac{1}{2}\,{\sqrt[4]{x/n^{2}}}\right)}{1+n^{2}x^{2}}\,d x\\\lt \int_{0}^{\infty}\frac{\frac{1}{2}\sqrt{x}}{1+n^{2}x^{2}}\,d x\qquad (because~\sin \theta\lt \theta~~for~\theta\gt 0 )\\={\frac{1}{2n^{3/2}}}\int_{0}^{\infty}{\frac{\sqrt{u}}{1+u^{2}}}\,d u\qquad{\mathrm{(with~}}u=n x).

Because the last integral converges to a value independent of n, the result follows by the squeeze principle.

Related Answered Questions