Question 6.6.5.5: finding exact Values If it is known that sinα=4/5, π/2< α......

Finding exact Values

If it is known that \sin\alpha={\frac{4}{5}},\,{\frac{\pi}{2}}\lt \alpha\lt \pi, and that \sin\beta=-\frac{2}{\sqrt{5}}=-\frac{2\sqrt{5}}{5},\pi\lt \beta\lt {\frac{3\pi}{2}}, find the exact value of

(\mathbf{a})\,\cos\alpha\quad(\mathbf{b})\,\cos\beta\quad(c)\,\cos\left(\alpha+\beta\right)\quad(\mathbf{d})\,\sin\left(\alpha+\beta\right)
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Because \sin\alpha={\frac{4}{5}}={\frac{y}{r}} and {\frac{\pi}{2}}\lt \alpha\lt \pi, Let y = 4 and r = 5 and replace \alpha in quadrant II. The point P=(x,y)\,=\,(x,4)\,,x\,\lt 0, is on a circle of radius 5_that is, x^{2}+y^{2}=25. See Figure 27. Then

x^{2}+y^{2}=25.

x^{2}+16=25.          y = 4

x^{2}=25 – 16 = 9

x = -3            x\lt 0

Then

\cos\alpha={\frac{x}{r}}=-{\frac{3}{5}}

Alternatively, \cos \alpha can be found using identities, as follows:

\cos\alpha \underset{\overset{\uparrow }{\alpha\, \text{in quadrant II.} \cos \alpha \lt0}}{=}-{\sqrt{1-\sin^{2}\alpha}}=-{\sqrt{1-{\frac{16}{25}}}}=-{\sqrt{{\frac{9}{25}}}}=-{\frac{3}{5}}

(b) Because \sin\beta={\frac{-2}{\sqrt{5}}}={\frac{y}{r}} and \pi\lt \beta\lt {\frac{3\pi}{2}}, let y = -2 and r = \sqrt{5} and replace \beta in quadrant III. The point P=\left(x,y\right)=\left(x,-2\right),x\lt 0, is on a circle of radius \sqrt{5}_that is, x^{2}+y^{2}=5. See Figure 28. Then

x^{2}+y^{2}=5

x^{2}+4=5                y = -2

x^{2}=1

x = -1           x\lt 0

Then

\cos\beta={\frac{x}{r}}={\frac{-1}{\sqrt{5}}}=-{\frac{\sqrt{5}}{5}}

Alternatively, \cos \beta can be found using identities, as follows:

\cos\beta=-\sqrt{1-\sin^{2}\beta}=-\sqrt{1-{\frac{4}{5}}}=-\sqrt{{\frac{1}{5}}}=-{\frac{\sqrt{5}}{5}}

(c) Use the results found in parts (a) and (b) and formula (1) to obtain

\begin{array}{r l}{\cos\left(\alpha+\beta\right)\,=\,\cos\alpha\cos\beta-\,\sin\alpha\sin\beta}\\ {\,}{{}=-{\frac{3}{5}}\!\left(-{\frac{\sqrt{5}}{5}}\right)-{\frac{4}{5}}\!\left(-{\frac{2{\sqrt{5}}}{5}}\right)={\frac{11{\sqrt{5}}}{25}}}\end{array}

(d) {\sin\left(\alpha+\beta\right)=\sin\alpha\cos\beta+\cos\alpha\sin\beta}\\ ={\frac{4}{5}}\left(-{\frac{\sqrt{5}}{5}}\right)+\left(-{\frac{3}{5}}\right)\left(-{\frac{2{\sqrt{5}}}{5}}\right)={\frac{2{\sqrt{5}}}{25}}

Precalculus_ Concepts Through Functions, A Unit Circle Approach to Trigonometry [1481615]_2023-09-28_4.30_04
Precalculus_ Concepts Through Functions, A Unit Circle Approach to Trigonometry [1481615]_2023-09-28_4.29_03
Loading more images...

Related Answered Questions

Question: 6.6.5.12

Verified Answer:

Divide each side of equation (9) by {\sqrt{...
Question: 6.6.5.11

Verified Answer:

Solution A Attempts to use available identities do...
Question: 6.6.5.10

Verified Answer:

First, for \sin^{-1} u, the restric...
Question: 6.6.5.9

Verified Answer:

We seek the sine of the sum of two angles, ...
Question: 6.6.5.8

Verified Answer:

Formula (6) cannot be used because \tan \fr...
Question: 6.6.5.7

Verified Answer:

\tan\left(\theta+\pi\right)\,=\,{\frac{\tan...
Question: 6.6.5.6

Verified Answer:

{\frac{\cos\left(\alpha-\beta\right)}{\sin\...
Question: 6.6.4.8

Verified Answer:

Start with the left side and multiply the numerato...
Question: 6.6.4.7

Verified Answer:

{\frac{\tan v+\cot v}{\sec v\csc v}} \under...
Question: 6.6.4.6

Verified Answer:

The left side is more complicated. Start with it a...