Question 11.11.1.9: Finding the Sum of a Sequence Find the sum of each sequence.......

Finding the Sum of a Sequence

Find the sum of each sequence.

(a) \sum_{k=1}^{5}\left(3k\right)                        (b) \sum_{k=1}^{10}\;(k^{3}+1)

(c) \sum_{k=1}^{24}\;(k^{2}-7k+2)              (d) \sum_{k=6}^{20}(4k^{2})

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) \sum_{k=1}^{5}\,\left(3k\right)\,=\,3\sum_{k=1}^{5}k          Property (1)

=3{\bigg(}{\frac{5\,(5\,+\,1)}{2}}{\bigg)}            Formula (6)

\begin{array}{l}{=3\left(15\right)}\\ {=45}\end{array}

\sum_{k=1}^{n}\,\left(c a_{k}\right)\,=\,c a_{1}\,+\,c a_{2}\,+\,\cdot \cdot\,\cdot\,+\,c a_{n}\, =\,c\left(a_{1} \,+\,a_{2}\,+\,\cdot\,\cdot\,\cdot\,+\,a_{n}\right)\,=\,c\sum_{k=1}^{n}a_{k}    (1)

\sum_{k=1}^{n}k=1\,+\,2\,+\,3\,+\,\cdot\,\cdot\,\cdot\,+\,n\,={\frac{n\,(n\,+\,1)}{2}}     (6)

(b) \sum_{k=1}^{10}\;(k^{3}+1)\;=\;\sum_{k=1}^{10}k^{3}\,+\,\sum_{k=1}^{10}1   Property (2)

=\left({\frac{10\left(10+1\right)}{2}}\right)^{2}+1\left(10\right)         Formulas (8) and (5)

\begin{array}{c}{{=3025\,+\,10}}\\ {{=\,3035}}\end{array}

\sum_{k=1}^{n}\,\left(a_{k}+\,b_{k}\right)\,=\,\sum_{k=1}^{n}a_{k}\,+\,\sum_{k=1}^{n}b_{k}          (2)

\sum_{k=1}^{n}k^{3}=1^{3}+2^{3}+3^{3}+\cdot\cdot\cdot\ +n^{3}=\left[{\frac{n(n+1)}{2}}\right]^{2}        (8)

\sum_{k=1}^{n}c=\underbrace{c+c+\cdots+c}_{\text{n terms}} =c n             c is a real number  (5)

(c) \sum_{k=1}^{24}\;(k^{2}-7k+2)\;=\;\sum_{k=1}^{24}k^{2}-\sum_{k=1}^{24}\;(7k)\;+\;\sum_{k=1}^{24}2                Properties (2) and (3)

=\sum_{k=1}^{24}k^{2}-7\sum_{k=1}^{24}k+\sum_{k=1}^{24}2            Property (1)

={\frac{24\left(24+1\right)\left(2\cdot24+1\right)}{6}}-7{\Biggl(}{\frac{24\left(24+1\right)}{2}}{\Biggr)}+2\left(24\right)            Formulas (7), (6), (5)

\begin{array}{l}{=4900-2100+48}\\ {=2848}\end{array}

\sum_{k=1}^{n}\,(a_{k}-b_{k})\,=\,\sum_{k=1}^{n}a_{k}\,-\,\sum_{k=1}^{n}b_{k}             (3)

\sum_{k=1}^{n}k^{2}=1^{2}+2^{2}+3^{2}+\cdot\cdot\cdot\,+\,n^{2}={\frac{n\left(n\,+\,1\right)\left(2n\,+\,1\right)}{6}}       (7)

(d) Notice that the index of summation starts at 6. We use property (4) as follows:

\sum_{k=j+1}^{n}a_{k}\,=\,\sum_{k=1}^{n}a_{k}\,-\,\sum_{k=1}^{j}a_{k}\,, where 0\lt j\lt n     (4)

\sum_{k=6}^{20}(4k^{2}) = 4\sum_{k=6}^{20}k^{2} = 4\biggl[\sum_{k=1}^{20}k^{2}-\sum_{k=1}^{5}k^{2}\biggr] = 4\biggl[{\frac{20\left(21\right)\left(41\right)}{6}}-{\frac{5\left(6\right)\left(11\right)}{6}}\biggr]

\overset{\uparrow }{\text{Property (1)}}          \overset{\uparrow }{\text{Property (4)}}                                          \overset{\uparrow }{\text{Formula (7)}}

=4[2870-55]=11,260

Related Answered Questions

Question: 11.11.2.5

Verified Answer:

(a) Formula (2) states that a_{n}=a_{1}+\;(...
Question: 11.11.1.8

Verified Answer:

(a) The sum 1^{2}\,+\,2^{2}\,+\,3^{2}\,+\,\...
Question: 11.11.1.7

Verified Answer:

(a) \sum_{k=1}^{n}{\frac{1}{k}}=1+{\frac{1}...
Question: 11.11.1.6

Verified Answer:

The first two terms are given. Finding each succes...
Question: 11.11.1.5

Verified Answer:

The first term is given as s_{1} = 1.[/late...
Question: 11.11.2.7

Verified Answer:

This is the sum S_{n} of an arithme...
Question: 11.11.1.3

Verified Answer:

The first six terms of the sequence are c_{...
Question: 11.11.1.2

Verified Answer:

The first six terms of the sequence are b_{...
Question: 11.11.1.1

Verified Answer:

The first six terms of the sequence are a_{...
Question: 11.11.2.8

Verified Answer:

The bottom row requires 20 tiles and the top row, ...