Finding the Sum of an arithmetic Sequence
Find the sum: 60\,+\,64\,+\,68\,+\,72\,+\,\cdot\,\cdot\,\cdot\,+\,120
This is the sum S_{n} of an arithmetic sequence \{a_{n}\}{\mathrm{,~}} whose first term is a_{{1}}=60 and whose common difference is d = 4. The nth term is a_{n}=120. Use formula (2) to find n.
\ a_{n}=a_{1}+\;(n\;-\;1)d Formula (2)
120=60+(n-1)\cdot4 a_{n}=120,a_{1} = 60,d=4
60=4(n-1) Simplify.
15=n-1 Simplify.
n\,=\,16 Solve for n.
Now use formula (4) to find the sum S_{16}.
S_{n} ={\frac{n}{2}}\left(a_{1}+\,a_{n}\right) (4)
60\,+\,64\,+\,68\,+\,\cdot\,\cdot\,\cdot\,+\,120\,=\,S_{16}\,=\,\frac{16}{2}\,(60\,+\,120)\,=\,1440S_{n} \overset{↑}{=}{\frac{n}{2}}(a_{1}\,+\,a_{n})