Question 14.3: For the 200-kg space vehicle of Sample Prob. 14.1, it is kno......

For the 200-kg space vehicle of Sample Prob. 14.1, it is known that at t = 2.5 s, the velocity of part A is \text v_A = (270 m/s)i – (120 m/s)j + (160 m/s)k and the velocity of part B is parallel to the xz plane. Determine the velocity of part C.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Since there is no external force, the initial momentum m\text v_0 is equipollent to the system of the final momenta. Equating first the sums of the vectors in both parts of the adjoining sketch, and then the sums of their moments about O, we write

L _1= L _2: \quad\quad m \text v _0=m_A \text v _A+m_B \text v _B+m_C \text v _C                                      (1)

\left( H _O\right)_1=\left( H _O\right)_2: \quad\quad 0= r _A \times m_A \text v _A+ r _B \times m_B \text v _B+ r _C \times m_C \text v _C                                          (2)

Recalling from Sample Prob. 14.1 that \text v _0=(150 m / s ) i

m_A=100 ~kg \quad m_B=60~ kg \quad m_C=40~ kg

 

r _A=(555~ m ) i -(180~ m ) j +(240~ m ) k

 

r _B=(255 ~m ) i -(120 ~m ) k

 

r _C=(105~ m ) i +(450 ~m ) j -(420 ~m ) k

and using the information given in the statement of this problem, we rewrite Eqs. (1) and (2) as follows:

200(150 i )=100(270 i -120 j +160 k )+60\left[\left(v_B\right)_x i +\left(v_B\right)_z k \right] \\ \\ +40\left[\left(v_C\right)_x i +\left(v_C\right)_y j +\left(v_C\right)_z k \right]                                        (1′)

0=100\left|\begin{array}{ccc} i & j & k \\555 & -180 & 240 \\270 & -120 & 160\end{array}\right|+60\left|\begin{array}{ccc} i & j & k \\255 & 0 & -120 \\\left(v_B\right)_x & 0 & \left(v_B\right)_z\end{array}\right| \\ \\ +40\left|\begin{array}{ccc} i & j & k \\105 & 450 & -420 \\\left(v_C\right)_x & \left(v_C\right)_y & \left(v_C\right)_z\end{array}\right|                                    (2′)

Equating to zero the coefficient of j in (1′) and the coefficients of i and k in (2′), we write, after reductions, the three scalar equations

\left(v_C\right)_y-300=0

 

450\left(v_C\right)_z+420\left(v_C\right)_y=0

 

105\left(v_C\right)_y-450\left(v_C\right)_x-45~000=0

which yield, respectively,

\left(v_C\right)_y=300 \quad\left(v_C\right)_z=-280 \quad\left(v_C\right)_x=-30

The velocity of part C is thus

v _C=-(30 ~m / s ) i +(300~ m / s ) j -(280~ m / s ) k

Related Answered Questions