Question 4.EC.I: I. Determination of Capacitance  Background It is known that......

I. Determination of Capacitance

Background

It is known that capacitors play a significant role in the electrical circuits. There are several methods of measurements of the capacitance of a capacitor. In this experiment you are required to perform the experiment in order to determine the capacitance of an AC capacitor using a simple electrical circuitry.

In Fig. 4 – 8, a capacitor of capacitance C and a resistor of resistance R are connected in series to the alternating voltage source of mains frequency.

The electrical power which is dissipated at the resistor R depends on the values of \varepsilon_{0}, C, R and frequency of the mains f. Graphical analysis of this relationship can be used to determine C.

Graphical analysis of this relationship can be used to determine C.

Materials and apparatus

1. Capacitor.

2. Three resistors of known values with ± 5% errors ( R_{A} = 680 Ω, R_{B} = 1500 Ω, and R_{C} = 3300 Ω) as shown in Fig. 4 – 9.

3. Step-down isolation transformer for alternating voltage source of f = 50 Hz.

4. Digital voltmeter.
5. Electrical connectors.
6. Linear graph papers.

Warning: The digital multimeter in this experiment will be used for measuring the rms voltage(\tilde{\bf V}) across R only. Do not use it to measure in other modes.

Instructions

(a) Derive the expression for the average power dissipation \overline{{P}} in resistor R in terms of \varepsilon_{0} , R, C and w.

(b) Deduce the condition for which \overline{{P}} is a maximum.

(c) Convert the dependence found in (a) into a linear dependence of certain quantities α and β.

(d) Measure the root mean square (effective) voltage V across R for each of all possible combinations of R_{A} , R_{B} and R_{C}.

(e) Plot \overline{{P}} versus R and from this graph compute the value of capacitance C.

(f) From (c), draw the graph of α versus β and determine capacitance C.

(g) Estimate the uncertainties in the values of C obtained in (e) and (f).

تعليق توضيحي 2023-09-04 213527
تعليق توضيحي 2023-09-04 214055
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
(\mathrm{a})\,\overline{{{ P}}}={I^{2} }R=\frac{\frac{1}{2}\varepsilon_{o}^{2}}{R^{2}+\left(\frac{1}{\omega C}\right)^{2}}R.

 

({\bf b})\,\,\frac{\mathrm{d}}{\mathrm{d}R}\,\overline{{P}}=0\,,

 

\frac{\mathrm{d}}{\mathrm{d}R}\,\overline{{P}}=\frac{\mathrm{d}}{\mathrm{d}R}\,\frac{\frac{\mathrm{l}}{2}\epsilon_{0}^{2}}{R^{2}+\left(\frac{\mathrm{l}}{\omega C}\right)^{2}}R

 

={\frac{1}{2}}\epsilon_{o}^{2}{\frac{R^{2}+\left({\frac{1}{\omega C}}\right)^{2}-R(2R)}{\left[R^{2}+\left({\frac{1}{\omega C}}\right)^{2}\right]^{2}}},

 

condition for {\overline P}_{\operatorname*{max}}:              R={\frac{1}{\omega C}}.

(c)                \overline{{{P}}}=\frac{\frac{1}{2}\epsilon_{0}^{2}}{R^{2}+\left(\frac{1}{\omega C}\right)^{2}}R=\frac{\frac{1}{2}\epsilon_{0}^{2}R}{R^{2}\Big[1+\left(\frac{1}{R\omega C}\right)^{2}\Big]}

 

=\frac{{\frac{1}{2}}\varepsilon_{0}^{2}}{R\Big[1+\Big({\frac{1}{R_{\omega C}}}\Big)^{2}\Big]}

 

\Rightarrow{\frac{1}{R \overline{P}}}={\frac{2}{\epsilon_{0}^{2}}}\left(1+{\frac{1}{R^{2}}}\,{\frac{1}{\omega^{2}C^{2}}}\right)

 

\frac{1}{R\,\overline{{{P}}}}\,=\frac{1}{V^{2}}=\frac{2}{\epsilon_{0}^{2}}+\frac{2}{\epsilon_{0}^{2}}\left(\frac{1}{\omega C}\right)^{2}\frac{1}{R^{2}}.

 

Note: The linear graph will be \frac{1}{R\,\overline{{{P}}}} or \frac{1}{V^{2}} versus \frac{1}{R^{2}} If a is the slope and b is the intercept with the Y axis, then   {\frac{1}{\omega^{2}C^{2}}}={\frac{a}{b}}\Rightarrow\!C={\frac{1}{\omega}}\,\sqrt{\frac{b}{a}}\,.

An alternative method:

\frac{V^{2}}{R^{2}}=\frac{\frac{1}{2}\varepsilon_{o}^{2}}{R^{2}+\left(\frac{1}{\omega C}\right)^{2}},

 

\frac{R^{2}}{V^{2}}=\biggl[R^{2}+\biggl(\frac{1}{\omega C}\biggr)^{2}\biggr]\frac{2}{\epsilon_{0}^{2}},

 

{\frac{1}{V^{2}}}=\left[1+\left({\frac{1}{\omega C}}\right)^{2}{\frac{1}{R^{2}}}\right]{\frac{2}{\epsilon_{0}^{2}}},

 

{\frac{1}{V^{2}}}={\frac{2}{\epsilon_{\mathrm{0}}^{2}}}+{\frac{2}{\epsilon_{\mathrm{0}}^{2}}}\left({\frac{1}{\omega C}}\right)^{2}{\frac{1}{R^{2}}},

 

R^{2}=\frac{1}{2}\varepsilon_{0}^{2}\bigl(\frac{R}{V}\bigr)^{2}-\bigl(\frac{1}{\omega C}\bigr)^{2}.

 

Note: The graph will be R^{2} versus \left({\frac{R}{V}}\right)^{2} and C is determined from the Y-intercept.

(d)

Table–1–

(e)

 

{\mathrm{R~at~}}{\overline{{P}}}_{\mathrm{max}}=1600~{\mathrm{\Omega \Rightarrow C}}={\frac{1}{\omega R}}={\frac{1}{2\pi{\times}{\mathrm{50}}{\times}{\mathrm{1600}}}}

 

=1.9\times10^{-6}\ \mathrm{F}=1.9\ \mu\mathrm{F}.

 

(f) Linear graph.

Table–2–

Graphical analysis: slope =a\;=\;0.004\times10^{6}\;\Omega/\mathrm{W}, Y-intercept = b = 0.0015(\Omega W)^{-1}:

 

{\frac{1}{\omega^{2}\,C^{2}}}={\frac{a}{b}}\Rightarrow C={\frac{1}{\omega}}{\sqrt{\frac{b}{a}}}=1.95\times10^{-6}\,{\mathrm{F}}=1.95\,{\mathrm{~}}\mu{\mathrm{F}}.

An alternative method of linear graph

Table–3–

Graphical analysis: Y-intercept =\left({\frac{1}{\omega C}}\right)^{2}=2.5428\times10^{6}\,\Omega^{2}

 

{\frac{1}{\omega C}}=1.595\times10^{3}\,\Omega\Rightarrow C=1.99\times10^{-6}\,{F}=1.99\,~{\mu{F}}.

(g) Estimation of the uncertainty in the values of C obtained in (e). Estimation of the uncertainty in the values of C obtained in (f).

تعليق توضيحي 2023-09-04 220722
Screenshot 2023-09-04 232908
تعليق توضيحي 2023-09-04 221753
Loading more images...

Table–1–

No. Resistor (s) R (Ω) V (V) {\overline{{P}}}={\frac{V^{2}}{R}}({W})
1 {\mathit{R}}_{A} 680 9.86 o. 144
2 {\mathit{R}}_{B} 1500 17.36 0.202
3 {\mathit{R}}_{C} 3300 22.81 o. 159
No. Resistor (s)  (Ω1) V (V) {\overline{{P}}}={\frac{V^{2}}{R}}({W})
4 R_{A}+R_{B} 2180 20.49 o. 193
5 R_{\mathrm{{A}}}~//~R_{\mathrm{{B}}} 468 7.28 0.111
6 R_{B}+R_{C} 4800 23.98 o. 122
7 R_{B}\;//{ R}_{C} 1032 13.78 0.186
8 R_{C}+R_{A} 3980 23.66 o. 141
9 R_{C}\ //{R}_{A} 564 8.42 o. 126
10 R_{A}+R_{B}+R_{C} 5480 24. 40 o. 109
11 (R_{A}\;//{R}_{B})+R_{C} 3768 23.43 o. 147
12 (R_{B}\;//{R}_{C})+R_{A} 1712 18.63 0.202
13 (R_{C}\;//{A}_{A})+R_{B} 2064 20. 15 o. 195
14 (R_{A}\;//{ R}_{B})\;//{ R}_{c} 410 6.22 0.094
15 \left(R_{A}+R_{B}\right)\,//\,R_{\mathrm{C}} 1313 16. 18 0. 200
16 \left(R_{B}+R_{C}\right)\,//\,R_{\mathrm{A}} 596 8.82 0.131
17 \left(R_{C}+R_{A}\right)\,//\,R_{\mathrm{B}} 1089 14.36 o. 190

Table–2–

R(Ω) v(v) \overline{{{P}}}=\frac{V^{2}}{R}({W}) {\frac{1}{R\,\overline{P}}}(\Omega W)^{-1} \frac{1}{R^{2}}(\times10^{-6}\;\Omega^{-2})
410 6.22 0.094 0.0259 5.948
468 7.28 0.111 0.0193 4. 565
564 8.42 0.126 0.0141 3. 143
596 8. 82 0.131 0.0128 2.815
680 9. 86 0.144 0.0102 2. 162
1032 13.78 0. 186 0.0052 0.938
1089 14.36 0. 190 0.0048 0.843
1313 16. 18 0. 200 0.0038 0. 580
1500 17.36 0.202 0.0033 0.444
1712 18.63 0.202 0.0029 0.341
2064 20. 15 0. 195 0.0025 0.234
2180 20.49 0. 193 0.0024 0. 210
3300 22. 81 0. 159 0.0019 0.091
3768 23.43 0. 147 0.0018 0. 070
3980 23.66 0.141 0.0018 0.0631
4800 23. 98 0.122 0.0017 0.0434
5480 24. 40 0.109 0.0017 0.0333

Table–3–

R(Ω) v(v) \overline{{{P}}}=\frac{V^{2}}{R}({W}) \left(\frac{R}{V}\right)^{2}(\Omega/\mathrm{V})^{2} R^{2}\operatorname{}(\times10^{6}\ \Omega^{2})
410 6.22 0.094 4345 0.17
468 7.28 0.111 4133 0.22
564 8.42 0.126 4487 0.32
596 8. 82 0.131 4566 0.36
680 9. 86 0.144 4756 0.46
1032 13.78 0. 186 5609 1.07
1089 14.36 0. 190 5751 1. 19
1313 16. 18 0. 200 6585 1.72
1500 17.36 0.202 7466 2.25
1712 18.63 0.202 8445 2. 93
2064 20. 15 0. 195 10492 4.26
2180 20.49 0. 193 11320 4. 75
3300 22. 81 0. 159 20930 10.89
3768 23.43 0. 147 25863 14. 20
3980 23.66 0.141 28297 15. 84
4800 23. 98 0.122 40067 23.04
5480 24. 40 0.109 50441 30.03

Related Answered Questions