In the crystallizer of Example 27.5, a growth rate G of 0.0018 ft/h (0.00055 m/h) is anticipated, and a predominant crystal size of 20 mesh is desired. How large must the magma volume in the crystallizer be; what nucleation rate B° is necessary; and what is the screen analysis of the product, assuming that the operation conforms to all the requirements of the mixed suspension-mixed product crystallization?
The screen opening of a 20-mesh standard screen is, from Appendix 20, 0.0328 in., or 0.00273 ft. This dimension can be used for L, and the shape factor a [Eq. (27.16)] is assumed to be unity. From Example 27.5, the volume flow rate of mother liquor in the product magma is
v_p=a L^3 (27.16)
Q=\frac{44,520}{82.5}=540~ ft ^3 / h
Since, when z = 3, L_{pr} = 0.00273, Eq. (27.28) gives for the drawdown time and the volume of liquid in the crystallizer
z \equiv \frac{L}{G \tau} (27.28)
\tau=\frac{L_{p r}}{3 G}=\frac{0.00273}{3 \times 0.0018}=0.506~ h \quad V_{ c }=0.506 \times 540=273 ~ft ^3
The total magma volume is 273/0.85 = 321 ft³, or 2400 gal.
The nucleation rate is, from Eq. (27.44), since C = 10,000 lb/h,
B^{\circ}=\frac{C n_c}{m_c V_c}=\frac{C}{6 a \rho_c(G \tau)^3 V_c}=\frac{9 C}{2 a \rho_c V_c L_{p r}^3} (27.44)
\begin{aligned}B^{\circ}& =\frac{9 \times 10,000}{2 \times 105 \times 273 \times 0.00273^3} \\ & =7.72 \times 10^9 \text { nuclei } / t ^3- h \left(2.74 \times 10^9 \text { nuclei } / m ^3- h \right)\end{aligned}
By Eq. (27.40), the zero-size particle density is n° = 7.72 × 10^{7}/0.0018 = 4.289 × 10^{10} nuclei/ft^4 The value of L/Gτ is L/(0.0018)(0.506) = 1.1 × 10³ L. The equation for the number-density distribution is, from Eq. (27.27),
B^{\circ}=G n^{\circ} (27.40)
\begin{aligned}& \int_{n^{\circ}}^n \frac{d n}{n}=-\frac{1}{G \tau} \int_0^L d L \\ & \ln \frac{n^{\circ}}{n}=\frac{L}{G \tau}\end{aligned} (27.27)
\log n=\log n^{\circ}-\frac{1.1 \times 10^3 L}{2.3026}=10.632-4.777 \times 10^2 L
This equation is plotted in Fig. 27.16.
The screen analysis is found by reading ordinates from Fig. 27.15c for values of z corresponding to mesh openings. For example, for the 20-mesh point, where z = 3, x_m is 0.35. In general,
z=\frac{L}{\tau G}=\frac{L}{0.506 \times 0.0018}=1098 L
Details are given in Table 27.2.
TABLE 27.2 | |||||
Mesh | Size | z | Screen analysis, % | ||
ft | mm | Cumulative | Differential | ||
8 | 0.0078 | 2.37 | 8.5 | 97 | 3 |
9 | 0.0065 | 1.98 | 7.1 | 93 | 4 |
10 | 0.0054 | 1.65 | 5.9 | 84 | 9 |
12 | 0.0046 | 1.40 | 5 | 74 | 10 |
14 | 0.0038 | 1.16 | 4.2 | 61 | 13 |
16 | 0.0033 | 1.01 | 3.6 | 48 | 13 |
20 | 0.0027 | 0.82 | 3.0 | 35 | 13 |
24 | 0.0023 | 0.70 | 2.5 | 25 | 10 |
28 | 0.0019 | 0.58 | 2.1 | 17 | 8 |
32 | 0.0016 | 0.49 | 1.8 | 11 | 6 |
35 | 0.0014 | 0.43 | 1.5 | 6 | 5 |
42 | 0.0011 | 0.34 | 1.2 | 4 | 2 |