Question 15.10: In the Geneva mechanism of Sample Prob. 15.9, disk D rotates......

In the Geneva mechanism of Sample Prob. 15.9, disk D rotates with a constant counterclockwise angular velocity \text V_D of 10 rad/s. At the instant when f = 150°, determine the angular acceleration of disk S.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Referring to Sample Prob. 15.9, we obtain the angular velocity of the frame S attached to disk S and the velocity of the pin relative to S:

\begin{gathered}\mathrm{v}_{S}=4.08~ \mathrm{rad} / \mathrm{s} i \\\mathrm{~b}=42.4^{\circ} \quad \mathrm{v}_{P / S}=477 \mathrm{~mm} / \mathrm{s} \mathrm{d} \quad 42.4^{\circ}\end{gathered}Since pin P moves with respect to the rotating frame S, we write

{a}_{P}={a}_{P^{\prime}}+{a}_{P / S}+{a}_{c}                                    (1)

Each term of this vector equation is investigated separately.

Absolute Acceleration a_P. Since disk D rotates with a constant angular velocity, the absolute acceleration a_P is directed toward B. We have

\begin{aligned}a_{P} & =R \mathrm{v}_{D}^{2}=(500 \mathrm{~mm})(10 \mathrm{rad} / \mathrm{s})^{2}=5000 \mathrm{~mm} / \mathrm{s}^{2} \\{a}_{P} & =5000 \mathrm{~mm} / \mathrm{s}^{2}~ \mathrm{C} ~30^{\circ}\end{aligned}

Acceleration a_{P^{\prime}} of the Coinciding Point {P^{\prime}}. The acceleration a_{P^{\prime}} of the point {P^{\prime}} of the frame S which coincides with P at the instant considered is resolved into normal and tangential components. (We recall from Sample Prob. 15.9 that r = 37.1 mm.)

\begin{aligned}& \left(a_{P^{\prime}}\right)_{n}=r \mathrm{~V}_{S}^{2}=(37.1 \mathrm{~mm})(4.08 ~\mathrm{rad} / \mathrm{s})^{2}=618 \mathrm{~mm} / \mathrm{s}^{2} \\& \left({a}_{P^{\prime}}\right)_{n}=618 \mathrm{~mm} / \mathrm{s}^{2} \mathrm{~d} \quad 42.4^{\circ} \\& \left(a_{P^{\prime}}\right)_{t}=r \mathrm{a}_{S}=37.1 \mathrm{a}_{S} \quad\quad\left({a}_{P^{\prime}}\right)_{t}=37.1 \mathrm{a}_{S} \mathrm{x~f}~ 42.4^{\circ}\end{aligned}

Relative Acceleration a_{P/S}. Since the pin P moves in a straight slot cut in disk S, the relative acceleration a_{P/S} must be parallel to the slot; i.e., its direction must be a 42.4°.

Coriolis Acceleration a_c. Rotating the relative velocity \text v_{P/S} through 90° in the sense of \text V_S , we obtain the direction of the Coriolis component of the acceleration: h 42.4°. We write

\begin{gathered}a_{c}=2 \mathrm{v}_{S} v_{P / S}=2(4.08~ \mathrm{rad} / \mathrm{s})(477 \mathrm{~mm} / \mathrm{s})=3890 \mathrm{~mm} / \mathrm{s}^{2} \\{a}_{c}=3890 \mathrm{~mm} / \mathrm{s}^{2} \mathrm{~h}~ 42.4^{\circ}\end{gathered}

We rewrite Eq. (1) and substitute the accelerations found above:

\begin{aligned}& {a}_{P}=\left({a}_{P^{\prime}}\right)_{n}+\left({a}_{P^{\prime}}\right)_{t}+{a}_{P / S}+{a}_{c} \\& {\left[5000 ~~\mathrm{c} \quad 30^{\circ}\right]=\left[\begin{array}{lll}618 \mathrm{~d} & 42.4^{\circ}\end{array}\right]+\left[37.1 \mathrm{a}_{S} \text { x f} ~42.4^{\circ}\right]} \\& +\left[\begin{array}{ll}a_{P / S} ~\text {z a}& 42.4^{\circ}\end{array}\right]+\left[\begin{array}{ll}3890 \mathrm{~h}~ 42.4^{\circ}\end{array}\right]\end{aligned}

Equating components in a direction perpendicular to the slot,

\begin{aligned}5000~ \cos 17.6^{\circ}=37.1 \mathrm{a}_{S}-3890 & \\& \mathrm{~A}_{S}=\mathrm{A}_{S}=233~ \mathrm{rad} / \mathrm{s}^{2} ~\mathrm{i}\end{aligned}
15.10.1
15.10.2
Loading more images...

Related Answered Questions

Question: 15.5

Verified Answer:

Motion of Crank AB. Referring to Sample Prob. 15.3...
Question: 15.4

Verified Answer:

a. Angular Velocity of the Gear. Since the gear ro...