Question A.1: Let  a  be the arithmetic average of a1, a2,…, an. Then (i) ......

Let \bar{a} be the arithmetic average of a_1, a_2,…, a_n. Then

(i)    \sum_{i=1}^{n}(a_{i}-{\bar{{a}}})=0,

(i)   \sum_{i=1}^{n}(a_{i}-{\bar{a}})^{2}=\sum_{i=1}^{n}a_{i}^{2}-n{\bar{a}}^{2},

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We put

S=\sum_{i=1}^{n}a_{i},

so that

{\overline{{a}}}={\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}}={\frac{S}{n}}.

Therefore,

\sum_{i=1}^{n}(a_{i}-{\bar{a}})=\sum_{i=1}^{n}a_{i}-\sum_{i=1}^{n}{\bar{a}}    (from Proposition 1.1)

=S-n{\bar{a}}    (from (1.4))

={S-n\cdot{\frac{S}{n}}}=0.

P(A ∪ B) = P(A) + P(B).             (1.4)

For Part (ii), we observe first that (put b_{i}=-\overline{{{a}}}\,\,\mathrm{for}\,\,\,\,i=1,2,\ldots,n in the result of Exercise 8)

\sum_{i=1}^{n}(a_{i}-{\overline{{a}}})^{2}=\sum_{i=1}^{n}a_{i}^{2}-2\sum_{i=1}^{n}a_{i}{\overline{{a}}}+\sum_{i=1}^{n}{\overline{{a}}}^{2}.

But from the second part of Proposition 1.1 and (1.4) we obtain respectively that

\sum_{i=1}^{n}(a_{i}\bar{a})=\bar{a}\sum_{i=1}^{n}a_{i}=\frac{S}{n}\cdot S=\frac{S^{2}}{n}

and

\sum_{n=1}^{n}\overline{{{a}}}^{2}=n\overline{{{a}}}^{2}=n\biggl(\frac{S}{n}\biggr)^{2}=\frac{S^{2}}{n}.

Thus, we finally obtain

\sum_{i=1}^{n}\left(a_{i}-{\bar{a}}\right)^{2}=\sum_{i=1}^{n}a_{i}^{2}-2{\frac{S^{2}}{n}}+{\frac{S^{2}}{n}}=\sum_{i=1}^{n}a_{i}^{2}-{\frac{S^{2}}{n}}=\sum_{i=1}^{n}a_{i}^{2}-n\Bigl({\frac{S}{n}}\Bigr)^{2}=\sum_{i=1}^{n}a_{i}^{2}-n{\overline{{a}}}^{2},

as required.

 

Related Answered Questions