Let
c =\sum\limits_{n=1}^{\infty} \frac{1}{n(2^n − 1) }= 1 +\frac{1}{6}+\frac{1}{21}+\frac{1}{60}+ · · ·.
Show that
e^c =\frac{2}{1}·\frac{4}{3}·\frac{8}{7}·\frac{16}{15}· · · · .
Let P_k be the partial product
{\frac{2}{1}}\cdot{\frac{4}{3}}\cdot{\frac{8}{7}}\cdot\cdot\cdot{\frac{2^{k}}{2^{k}-1}}.We want to show that
\lim_{k\to\infty}P_{k}=e^{c},where
c=\sum\limits_{n=1}^{\infty}{\frac{1}{n(2^{n}-1)}}\,.By continuity of the exponential and logarithm functions, this is equivalent to showing that \lim_{k→\infty} \ln(P_k) = c. Now
\ln(P_{k})=\ln\left({\frac{2}{1}}\cdot{\frac{4}{3}}\cdot{\frac{8}{7}}\cdot\cdot\cdot{\frac{2^{k}}{2^{k}-1}}\right)\\=\ln\left({\frac{2}{1}}\right)+\ln\left({\frac{4}{3}}\right)+\ln\left({\frac{8}{7}}\right)+\cdot\cdot\cdot+\ln\left({\frac{2^{k}}{2^{k}-1}}\right)\\=-\ln\left({\frac{1}{2}}\right)-\ln\left({\frac{3}{4}}\right)-\ln\left({\frac{7}{8}}\right)-\cdot\cdot\cdot-\ln\left({\frac{2^{k}-1}{2^{k}}}\right)\\=-\ln\left(1-{\frac{1}{2}}\right)-\ln\left(1-{\frac{1}{4}}\right)-\ln\left(1-{\frac{1}{8}}\right)-\cdot\cdot\cdot-\ln\left(1-{\frac{1}{2^{8}}}\right)\\=\sum\limits_{i=1}^{k}-\ln\left(1-{\frac{1}{2^{i}}}\right).Using the Maclaurin expansion (Taylor expansion about 0)
-\ln(1-x)=x+{\frac{x^{2}}{2}}+{\frac{x^{3}}{3}}+\cdot\cdot\cdot=\sum\limits_{n=1}^{\infty}{\frac{x^{n}}{n}}\qquad(|x|\lt 1),we get
\ln(P_{k})=\sum\limits_{i=1}^{k}\sum\limits_{n=1}^{\infty}{\frac{(1/2^{i})^{n}}{n}}=\sum_{n=1}^{\infty}\sum\limits_{i=1}^{k}{\frac{1}{n2^{i n}}}=\sum\limits_{n=1}^{\infty}{\frac{1}{n}}\,\sum\limits_{i=1}^{k}{\frac{1}{(2^{n})^{i}}}\,.Then, because
\sum\limits_{i=1}^{k}{\frac{1}{(2^{n})^{i}}}={\frac{1}{2^{n}}}+{\frac{1}{(2^{n})^{2}}}+\cdot\cdot\cdot+{\frac{1}{(2^{n})^{k}}}is a finite geometric series with sum
{\frac{1}{2^{n}}}\cdot{\frac{1-(1/2^{n})^{k}}{1-1/2^{n}}}={\frac{1-(1/2^{n})^{k}}{2^{n}-1}}\,,we have
\ln(P_{k})=\sum\limits_{n=1}^{\infty}{\frac{1-(1/2^{n})^{k}}{n(2^{n}-1)}}=\sum\limits_{n=1}^{\infty}{\frac{1}{n(2^{n}-1)}}-\sum\limits_{n=1}^{\infty}{\frac{1}{n(2^{n}-1)2^{n k}}}since the latter two series converge. From the estimate
\sum\limits_{n=1}^{\infty}{\frac{1}{n(2^{n}-1)2^{n k}}}\lt {\frac{1}{2^{k}}}\sum\limits_{n=1}^{\infty}{\frac{1}{n(2^{n}-1)}}we conclude that \lim_{k\to\infty}\ln{(P_{k})}=\sum\limits_{n=1}^{\infty}{\frac{1}{n(2^{n}-1)}}=c, as claimed.