Question P.177: Let c =∑n=1^∞ 1/n(2^n − 1) = 1 +1/6+1/21+1/60+ · · ·. Show t......

Let
c =\sum\limits_{n=1}^{\infty} \frac{1}{n(2^n − 1) }= 1 +\frac{1}{6}+\frac{1}{21}+\frac{1}{60}+ · · ·.
Show that
e^c =\frac{2}{1}·\frac{4}{3}·\frac{8}{7}·\frac{16}{15}· · · · .

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Let P_k be the partial product

{\frac{2}{1}}\cdot{\frac{4}{3}}\cdot{\frac{8}{7}}\cdot\cdot\cdot{\frac{2^{k}}{2^{k}-1}}.

We want to show that

\lim_{k\to\infty}P_{k}=e^{c},

where

c=\sum\limits_{n=1}^{\infty}{\frac{1}{n(2^{n}-1)}}\,.

By continuity of the exponential and logarithm functions, this is equivalent to showing that \lim_{k→\infty} \ln(P_k) = c. Now

\ln(P_{k})=\ln\left({\frac{2}{1}}\cdot{\frac{4}{3}}\cdot{\frac{8}{7}}\cdot\cdot\cdot{\frac{2^{k}}{2^{k}-1}}\right)\\=\ln\left({\frac{2}{1}}\right)+\ln\left({\frac{4}{3}}\right)+\ln\left({\frac{8}{7}}\right)+\cdot\cdot\cdot+\ln\left({\frac{2^{k}}{2^{k}-1}}\right)\\=-\ln\left({\frac{1}{2}}\right)-\ln\left({\frac{3}{4}}\right)-\ln\left({\frac{7}{8}}\right)-\cdot\cdot\cdot-\ln\left({\frac{2^{k}-1}{2^{k}}}\right)\\=-\ln\left(1-{\frac{1}{2}}\right)-\ln\left(1-{\frac{1}{4}}\right)-\ln\left(1-{\frac{1}{8}}\right)-\cdot\cdot\cdot-\ln\left(1-{\frac{1}{2^{8}}}\right)\\=\sum\limits_{i=1}^{k}-\ln\left(1-{\frac{1}{2^{i}}}\right).

Using the Maclaurin expansion (Taylor expansion about 0)

-\ln(1-x)=x+{\frac{x^{2}}{2}}+{\frac{x^{3}}{3}}+\cdot\cdot\cdot=\sum\limits_{n=1}^{\infty}{\frac{x^{n}}{n}}\qquad(|x|\lt 1),

we get

\ln(P_{k})=\sum\limits_{i=1}^{k}\sum\limits_{n=1}^{\infty}{\frac{(1/2^{i})^{n}}{n}}=\sum_{n=1}^{\infty}\sum\limits_{i=1}^{k}{\frac{1}{n2^{i n}}}=\sum\limits_{n=1}^{\infty}{\frac{1}{n}}\,\sum\limits_{i=1}^{k}{\frac{1}{(2^{n})^{i}}}\,.

Then, because

\sum\limits_{i=1}^{k}{\frac{1}{(2^{n})^{i}}}={\frac{1}{2^{n}}}+{\frac{1}{(2^{n})^{2}}}+\cdot\cdot\cdot+{\frac{1}{(2^{n})^{k}}}

is a finite geometric series with sum

{\frac{1}{2^{n}}}\cdot{\frac{1-(1/2^{n})^{k}}{1-1/2^{n}}}={\frac{1-(1/2^{n})^{k}}{2^{n}-1}}\,,

we have

\ln(P_{k})=\sum\limits_{n=1}^{\infty}{\frac{1-(1/2^{n})^{k}}{n(2^{n}-1)}}=\sum\limits_{n=1}^{\infty}{\frac{1}{n(2^{n}-1)}}-\sum\limits_{n=1}^{\infty}{\frac{1}{n(2^{n}-1)2^{n k}}}

since the latter two series converge. From the estimate

\sum\limits_{n=1}^{\infty}{\frac{1}{n(2^{n}-1)2^{n k}}}\lt {\frac{1}{2^{k}}}\sum\limits_{n=1}^{\infty}{\frac{1}{n(2^{n}-1)}}

we conclude that \lim_{k\to\infty}\ln{(P_{k})}=\sum\limits_{n=1}^{\infty}{\frac{1}{n(2^{n}-1)}}=c,  as claimed.

Related Answered Questions