Let X be a continuous random variable with mean µ = 10 and variance σ2 = 100/3. Using Chebyshev’s Inequality, find an upper bound for the following probabilities.
(a) P(|X − 10|≥ 2).
(b) P(|X − 10|≥ 5).
(c) P(|X − 10|≥ 9).
(d) P(|X − 10|≥ 20).
(a) 1
(b) 1
(c) 100/243
(d) 1/12