Question 3.3: Let X be a r.v. with p.d.f. f (x) = 3x², 0 < x < 1. Th......

Let X be a r.v. with p.d.f. f(x)=3x^{2},\ 0\lt x\lt 1. Then:
(i) Calculate the quantities: E X,E X^{2}, and V\!\!ar(X).
(ii) If the r.v. Y is defined by: Y=3X-2, calculate the EY and the V\!\!ar(Y).

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(i) By (3),

E X=\int_{-\infty}^{\infty}x f(x)d x, \quad{\mathrm{provided~this~integral~exists.}} \quad\qquad(3)

E X=\textstyle\int_{0}^{1}x\cdot3x^{2}\,d x={\textstyle\frac{3}{4}}x^{4}|_{0}^{1}={\textstyle\frac{3}{4}}=0.75, whereas by (7),

E X^{k}=\sum\limits_{i=1}^{n}{x_{i}^{k}}f(x_{i})\quad{\mathrm{or}}\quad E X^{k}=\sum\limits_{i=1}^{\infty}{x_{i}^{k}}f(x_{i})\quad{\mathrm{or}}\quad E X^{k}=\int_{-\infty}^{\infty}{x^{k}}f(x)\,d x.\qquad (7)
applied with k = 2, E X^{2}=\int_{0}^{1}x^{2}\cdot3x^{2}\,d x={\frac{3}{5}}\,=\,0.60, so that, by (9),

V\!\!ar(X)=E X^{2}-(E X)^{2}.\qquad\qquad\qquad\qquad(9)

V\!\!ar(X)=0.60-(0.75)^{2}=0.0375.
(ii) By (4) and (6),
E(c X)=c E X,\quad E(c X+d)=c E X+d,\quad{\mathrm{where~c~and}}\,d\,\mathrm{are~constants}.\quad(4)

E Y=\sum\limits_{i=1}^{n}g(x_{i})f(x_{i})\quad{\mathrm{or}}\quad E Y=\sum\limits_{i=1}^{\infty}g(x_{i})f(x_{i})\quad{\mathrm{or}}\quad E Y=\int_{-\infty}^{\infty}g(x)f(x)\,d x,\qquad\qquad(6)

E Y=E(3X-2)=3E X-2=3\times0.75-2=0.25, whereas by (10),

V\!\!ar(c X)=c^{2}\,V\!\!ar(X),\quad V\!\!ar(c X+d)=c^{2}\,V\!\!ar(X), \quad \mathrm {where~ c~ and~ d ~are~ constants.}\qquad\qquad(10)
V\!\!ar(Y)=V\!\!ar(3X-2)=9\,V\!\!ar(X)=9\times0.0375=0.3375.

Related Answered Questions

Question: 3.12

Verified Answer:

The p.d.f. of X is~f(x)=1/16 for x ...
Question: 3.15

Verified Answer:

Here \,x_{0.25}=2 since P(X\...
Question: 3.13

Verified Answer:

We have P(X\leq6)=16/32=0.50\geq0.50\ \ \ma...
Question: 3.11

Verified Answer:

(i)    The student earns an A with probability [la...
Question: 3.10

Verified Answer:

(i)    Since ~E X={\frac{1}{\lambda}}~[/lat...
Question: 3.9

Verified Answer:

Since ~E X=\alpha\beta{\mathrm{~and~}}V\!\!...
Question: 3.4

Verified Answer:

(i)    By Definition 3, E X=\int_{-\infty}^...
Question: 3.2

Verified Answer:

Define the r.v. X by: X = 10 with probability 18/3...
Question: 3.1

Verified Answer:

Define the r.v. ~X~ as follows: [la...