Question 3.4: Let X be a r.v. with p.d.f. f (x) = e^−x, x > 0. Then: (i......

Let X be a r.v. with p.d.f. f(x)=e^{-x},\;x\gt 0. Then:
(i) Find the m.g.f. M_{X}(t) for the t’s for which it is finite.
(ii) Using M_{X}, obtain the quantities: E X,E X^{2},\,\mathrm{and}\,V\!\!ar(X).
(iii) If the r.v. Y is defined by:~Y=2-3X, determine M_{Y}(t) for the t’s for which it is finite.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(i)    By Definition 3,

E X=\int_{-\infty}^{\infty}x f(x)d x,\quad{\mathrm{provided~this~integral~exists.}}\quad\qquad(3)

M_{X}(t)=E e^{t X}=\int_{0}^{\infty}e^{t x}\cdot e^{-x}d x=\int_{0}^{\infty}e^{-(1-t)x}\,d x

     =-\frac{1}{1-t}e^{-(1-t)x}|_{0}^{\infty}\;\;\;\;\mathrm{(provided}\;t\neq1)

     =-{\frac{1}{1-t}}(0-1)={\frac{1}{1-t}}\quad({\mathrm{provided}}\,1-t\gt 0{\mathrm{~or~}}t\lt 1).

Thus, M_{X}(t)={\frac{1}{1-t}},\,t\lt 1.
(ii)    By (13),
\left.\frac{d}{d t}M_{X}(t)\right|_{t=0}=E X~~\mathrm{~and~}~~\left.\frac{d^{n}}{d t^{n}}M_{X}(t)\right|_{t=0}=E X^{n},~~~~n=2,3,….\qquad (13)

\frac{d}{d t}M_{X}({t})|_{t=0}=\frac{d}{d t}(\frac{1}{1-t})|_{t=0}=\frac{1}{(1-t)^{2}}|_{t=0}=1=E X,\frac{d^{2}}{d t^{2}}M_{X}(t)|_{t=0}=\frac{d}{d t}(\frac{1}{(1-t)^{2}})|_{t=0}=\frac{2}{(1-t)^{3}}|_{t=0}={2}=E X^{2}, so that, by (9),

V\!\!ar(X)=E X^{2}-(E X)^{2}.\qquad\qquad\qquad\qquad(9)

V\!\!ar(X)=2-1^{2}=1.
(iii)    By (12),

M_{c X}(t)=M_{X}(c t),\quad M_{c X+d}(t)=e^{d t}M_{X}(c t),\quad{\mathrm{where~c~and~d~are~constants}}.\qquad\qquad(12)
M_{Y}(t)\,=\,M_{2-3X}(t)\,=\,M_{-3X+2}(t)\,=\,e^{2t}M_{X}(-3t)\,=\,e^{2t}{\frac{1}{1-(-3t)}}\,={\frac{e^{2t}}{1+3t}},\mathrm{{provided}}\;t\gt -{\frac{1}{3}}.

Related Answered Questions

Question: 3.12

Verified Answer:

The p.d.f. of X is~f(x)=1/16 for x ...
Question: 3.15

Verified Answer:

Here \,x_{0.25}=2 since P(X\...
Question: 3.13

Verified Answer:

We have P(X\leq6)=16/32=0.50\geq0.50\ \ \ma...
Question: 3.11

Verified Answer:

(i)    The student earns an A with probability [la...
Question: 3.10

Verified Answer:

(i)    Since ~E X={\frac{1}{\lambda}}~[/lat...
Question: 3.9

Verified Answer:

Since ~E X=\alpha\beta{\mathrm{~and~}}V\!\!...
Question: 3.3

Verified Answer:

(i) By (3), E X=\int_{-\infty}^{\infty}x f(...
Question: 3.2

Verified Answer:

Define the r.v. X by: X = 10 with probability 18/3...
Question: 3.1

Verified Answer:

Define the r.v. ~X~ as follows: [la...