Question 6.TC.3: Light Deflection by a Moving Mirror Reflection of light by a......

Light Deflection by a Moving Mirror
Reflection of light by a relativistically moving mirror is not theoretically new. Einstein discussed the possibility or worked out the process using the Lorentz transformation to get the reflection formula due to a mirror moving with a velocity ν. This formula, however, could also be derived by using a relatively simpler method. Consider the reflection process as shown in Fig. 6 – 8, where a plane mirror M moves with a velocity ν = ve_{x} (where e_{x}is a unit vector in the x-direction) observed from the lab frame F. The mirror forms an angle Φ with respect to the velocity (note that Φ ≤90°, see Fig. 6 – 8). The plane of the mirror has n as its normal. The light beam has an incident angle α and reflection angle β which are the angles between n and the incident beam 1 and reflection beam 1′ ,respectively in the laboratory frame F. It can be shown that

\sin\alpha-\sin\beta={\frac{v}{c}}\sin\phi\sin(\alpha+\beta).                                        (1)

3A. Einstein’s Mirror

About a century ago Einstein derived the law of reflection of an electromagnetic wave by a mirror moving with a constant velocity ν = – ve_{x} (see Fig. 6 – 9). By applying the Lorentz transformation to the result obtained in the rest frame of the mirror, Einstein found that:

\cos\beta=\frac{\left[1+\left(\frac{v}{c}\right)^{2}\right]\cos\alpha-2\,\frac{v}{c}}{1-2\,\frac{v}{c}\cos\alpha+\left(\frac{v}{c}\right)^{2}}.                      (2)

Derive this formula using Eq. (1) without Lorentz transformation!

3B. Frequency Shift
In the same situation as in 3A, if the incident light is a monochromatic beam hitting M with a frequency f, find the new frequency f’ after it is reflected from the surface of the moving mirror. If α = 30° and v = 0.6 c in Fig. 6 – 9, find frequency shift Δf in percentage of f.

3C. Moving Mirror Equation

Fig. 6 – 10 shows the positions of the mirror at time t_{0} and t. Since the observer is moving to the left, the mirror moves relatively to the right. Light beam 1 falls on point a at t_{0} and is reflected as beam 1′. Light beam 2 falls on point d at t and is reflected as beam 2′. Therefore, \overline{ab} is the wave front of the incoming light at time t_{0}. The atoms at point are disturbed by the incident wave front \overline{ab} and begin to radiate a wavelet. The disturbance due to the wave front \overline{ab} stops at time t when the wavefront strikes point d.

By referring to Fig. 6 – 10 for light wave propagation or using other methods, derive Eq. (1) .

تعليق توضيحي 2023-09-25 103421
تعليق توضيحي 2023-09-25 103722
تعليق توضيحي 2023-09-25 104952
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

3A. Einstein’s Mirror

By taking \phi={\frac{\pi}{2}} and replacing v with – v in Eq. (1), we obtain

\sin\alpha-\sin\beta=-{\frac{v}{c}}\sin(\alpha+\beta).                                      (3)

This equation can also be written in the form of

\left(1+{\frac{v}{c}}\cos\beta\right)\sin\alpha=\left(1-{\frac{v}{c}}\cos\alpha\right)\sin\beta.                                (4)

The square of this equation can be written in terms of a squared equation of cos β, as follows,

\left(1-2\,{\frac{v}{c}}\cos\alpha+{\frac{v^{2}}{c^{2}}}\right)\cos^{2}\!\beta+2\,{\frac{v}{c}}\,(1-\cos^{2}\alpha)\cos\beta

 

+2\,\frac{v}{c}\cos{\alpha}-\left(1+\frac{v^{2}}{c^{2}}\right)\cos^{2}\!\alpha=0\,,                        (5)

 

which has two solutions,

(\cos\beta)_{1}={\frac{2\,{\frac{v}{c}}\cos^{2}\!\alpha-\left(1+{\frac{v^{2}}{c^{2}}}\right)\cos\alpha}{1-2\,{\frac{v}{c}}\cos\alpha+{\frac{v^{2}}{c^{2}}}}}                          (6)

and

(\cos\beta)_{2}={\frac{-2\,{\frac{v}{c}}+\left(1+{\frac{v^{2}}{c^{2}}}\right)\cos\alpha}{1-2\,{\frac{v}{c}}\cos\alpha+{\frac{v^{2}}{c^{2}}}}}.                                     (7)

However, if the mirror is at rest (v = 0) then cos α = cos β; therefore the proper solution is

\cos\beta_{2}=\frac{-2\,\frac{v}{c}+\left(1+\frac{v^{2}}{c^{2}}\right)\cos\alpha}{1-2\,\frac{v}{c}\cos\alpha+\frac{v^{2}}{c^{2}}}.                               (8)

3B. Frequency Shift
The reflection phenomenon can be considered as a collision of the mirror with a beam of photons each carrying an incident and reflected momentum of magnitude

{p}_{f}=\frac{h f}{c}\ \mathrm{and}\ {p}_{f}^{\ ^{\prime}}=\frac{h f^{\prime}}{c}.                    (9)

The conservation of linear momentum during its reflection from the mirror for the component parallel to the mirror appears as

p_{f}\sin\alpha={p_{f}}^{\prime}\sin\beta\ \mathrm{or}\ f^{\prime}\sin\beta =f^{\prime}\,\frac{\left(1-\frac{v^{2}}{c^{2}}\right)\mathrm{sin}\,\alpha}{\left(1+\frac{v^{2}}{c^{2}}\right)-2\,\frac{v}{c}\mathrm{cos}\,\alpha}

= f sinα.                          (10)

Thus

f^{\prime}=\frac{\left(1+\frac{v^{2}}{c^{2}}\right)-2\,\frac{v}{c}\cos\alpha}{\left(1-\frac{v^{2}}{c^{2}}\right)}f.                            (11)

For α = 30° and v = 0.6 c,

\cos\alpha=\frac{1}{2}\sqrt{3}\,,\,\,1-\frac{v^{2}}{c^{2}}=0.64,\,\,1+\frac{v^{2}}{c^{2}}=1.36,                           (12)

so that

{\frac{f^{\prime}}{f}}={\frac{1.36-0.6{\sqrt{3}}}{0.64}}=0.5.                                 (13)

Thus, there is a decrease of frequency by 50% due to reflection by the moving mirror.

3C. Relativistically Moving Mirror Equation

Fig. 6 – 10 shows the positions of the mirror at time t_{0} and t. Since the observer is moving to the left, system is moving relatively to the right. Light beam 1 falls on point a at t_{0} and is reflected as beam 1′. Light beam 2 falls on point d at t and is reflected as beam 2′. Therefore, \overline{ab} is the wave front of the incoming light at time t_{0}. The atoms at point are disturbed by the incident wave front \overline{ab} and begin to radiate a wavelet. The disturbance due to the wave front \overline{ab} stops at time t when the wavefront strikes point d. As a consequence

\overline{{{a c}}}=\overline{{{b d}}}=c(t-t_{0}).                                 (14)

From this figure we also have {\overline{{e d}}}={\overline{{a g}}}\,, and

 

\sin\alpha=\frac{\overline{b d}+\overline{d g}}{\overline{a g}},\,\sin\beta=\frac{\overline{a c}-\overline{a f}}{\overline{a g}-\overline{e f}}.                        (15)

Fig. 6 – 11 displays the beam path 1 in more detail. From this figure it is easy to show that

{\overline{{d g}}}={\overline{{a e}}}={\frac{{\overline{{a o}}}}{\cos\alpha}}={\frac{v(t-t_{0})\sin\phi}{\cos\alpha}}                               (16)

and

\overline{{{a f}}}=\frac{\overline{{{a o}}}}{\cos{\beta}}=\frac{v(t-t_{0})\sin{\phi}}{\cos{\beta}}.                                            (17)

From the triangles aeo and afo we have \overline{e o}=\overline{{{ao}}} tan α and \overline{o f}=\overline{{{a o}}}\tan\beta. Since \overline{{{e f}}}=\overline{{{eo}}}+o f, then

\overline{{{e f}}}=v(t-t_{0})\sin\phi(\tan\alpha+\tan\beta).                        (18)

By substituting Eq. (14), (16), (17), and (18) into Eq. (15) we obtain

\sin\alpha=\frac{c+v\displaystyle\frac{\sin\phi}{\cos\alpha}}{\displaystyle\frac{\overline{ag}}{t-t_{0}}},                                    (19)

and

\sin\beta={\frac{c-v{\frac{\sin\phi}{\cos\beta}}}{{\frac{{\overline{{{a g}}}}}{t-t_0}-v\mathrm{sin}\;\phi\;(\tan\alpha+\tan\beta)}}}.                        (20)

Eliminating \frac{\overline{ag}}{t-t_{0}} from the two equations above leads to

v\sin\phi(\tan\alpha+\tan\beta)

= c\left(\frac{1}{\sin\alpha}-\frac{1}{\sin\beta}\right)+v\sin\phi{\Bigl(}\frac{1}{\sin \alpha\cos \alpha}+\frac{1}{\sin\beta\cos\beta}\Bigr).                                (21)

By collecting the terms containing v sin Φ, we obtain

{\frac{v}{c}}\sin\phi{\Big(}{\frac{\cos\alpha}{\sin\alpha}}+{\frac{\cos\beta}{\sin\beta}}{\Big)}={\frac{\sin\alpha-\sin\beta}{\sin\alpha\sin\beta}}                            (22)

or

\sin\alpha-\sin\beta={\frac{v}{c}}\sin\phi\;\sin(\alpha+\beta).                                    (23)

تعليق توضيحي 2023-09-25 111839
Loading more images...

Related Answered Questions