Question 7.4: (Quantiles of the standard normal distribution) We have just......

(Quantiles of the standard normal distribution) We have just seen how we can use the table of values for the standard normal distribution to find, for a given real z, the corresponding probability ฮฆ(z) = P(Z โ‰ค z). In many cases, interest lies in the opposite direction, so that for a given value ๐›ผ in the interval (0, 1), we want to find the value of z, denoted by \pmb{z_\alpha}, such that

\pmb{P(Z\gt z_{\alpha})=\alpha.}

In such a case, the value \pmb{z_\alpha} is called the (upper) ๐›‚-quantile of the distribution ฮฆ (Figure 7.4).
Find the ๐›ผ-quantiles of ฮฆ for the cases when

(i) ๐›ผ = 0.01,ย  ย  ย  ย  (ii) ๐›ผ = 0.05,ย  ย  ย  ย (iii) ๐›ผ = 0.10.

fig 7.4
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Since for any real z
P(Z \gt z) = 1 โˆ’ P(Z \leq z) = 1 โˆ’ \Phi (z),

we see that, if z_\alpha is the upper ๐›ผ-quantile of ฮฆ, we have 1 โˆ’ \Phi(z_\alpha) = ๐›ผ, or
\Phi(z_\alpha) = 1 โˆ’ ๐›ผ.

We thus look at the tables of the standard normal distribution and we seek, for different values of ๐›ผ, the closest z-value (up to two decimal places) for which the value of the distribution function is 1 โˆ’ ๐›ผ.

(i) For ๐›ผ = 0.01, the last equation becomes \Phi(z_{0.01}) = 0.99, and we see from the table in Appendix B that the corresponding quantile is

z_{0.01} โ‰… 2.33.

(ii) Similarly for ๐›ผ = 0.05, we get that \Phi(z_{0.05}) = 0.95, and from the tables we find the upper 0.05-quantile to be

z_{0.05} โ‰… 1.645

(since the value appears to be halfway between 1.64 and 1.65).

(iii) Now we have \Phi(z_{0.10}) = 0.10 and this gives, by using the table in Appendix B again, that

z_{0.10} โ‰… 1.28.

APPENDIX B

DISTRIBUTION FUNCTION OF THE STANDARD NORMAL DISTRIBUTION

\Phi(z)={\frac{1}{\sqrt{2\pi}}}\int_{- \infty}^{z}e^{-x^2/2}\,\mathrm{d}x

 

\Phi(-z) = 1 – \Phi(z)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.70.995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9889 0.9889 0.9890 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998

Related Answered Questions