Refer to Example 25 in Chapter 1 (see also Example 4 here), and test the null hypothesis H_{0}\colon F=G at level of significance α = 0.05 by using Theorem 4 and the above corollary.
Here m=n=15,\,{\ z_{0.05}}=1.645,\,{\mathrm{and}}\,z_{0.025=1.96}. Then:
C_{1}\simeq112.50-1.96\times24.105=112.50-47.2458\simeq65.254,
C_{2}\simeq112.50+47.2458\simeq159.746,
C\ \;\simeq\;112.50-1.645\times24.105\simeq112.50-39.653=72.847,
C^{\prime}\simeq112.50+39.653=152.153.
Next, comparing all 15 × 15 pairs in Table 15.3, we get the observed value of U = 185.
Therefore the hypothesis \textstyle H_{0} is rejected in favor of {H}_{A}^{\prime\prime}, since U = 185 > 159.746 = C_{2}; the null hypothesis is also rejected in favor of {H}_{A}^{\prime}, since U = 185 > 152.153 = C^{\prime}{\mathrm{;}} but the null hypothesis is not rejected when the alternative is H_{A}, because U=185\nless72.847=C.
Table 15.3 | |||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
X | 188 | 96 | 168 | 176 | 153 | 172 | 177 | 163 | 146 | 173 | 186 | 168 | 177 | 184 | 96 |
Y | 139 | 163 | 160 | 160 | 147 | 149 | 149 | 122 | 132 | 144 | 130 | 144 | 102 | 124 | 144 |