Question 6.35: Repeat Prob. 6–34, with a completely reversed torsional mome......

Repeat Prob. 6–34, with a completely reversed torsional moment of T = 1400 lbf · in applied.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

For completely reversed torsion, {k}_{a} and {k}_{b} of Prob. 6-34 apply, but {k}_{c} must also be considered.

Eq. 6-74:       {k}_{c}=0.328(110)^{0.125}{{ L N}}(1,0.125) =0.590{LN}(1,0.125)

({k}_{c})_{\mathrm{torsion}}=0.328\bar{S}_{u t}^{0.125}{{L N}}(1,0.125)                                      (6-74)

Note 0.590 is close to 0.577.

{S}_{S e}={k}_{a}\,{k}_{b}\,{k}_{c}\,{S}_{e}^{\prime}=0.768[{{ L N}}(1,0.058)](0.878)[0.590{LN}(1,0.125)][55.7{LN}(1,0.138)]

 

\bar{S}_{Se}=0.768(0.878)(0.590)(55.7)=22.2\,\mathrm{kpsi}

 

C_{S e}=(0.058^{2}+0.125^{2}+0.138^{2})^{1/2}=0.195

 

{S}_{S e}=22.2{L}{N}(1,0.195)\;\mathrm{kpsi}

Fig. A-15-15: D/d=1.25,r/d=0.125,\,\mathrm{then}\,K_{t s}=1.40. From Eqs. (6-78), (6-79) and Table 6-15

\bar{K}_{f}=\frac{K_{t}}{1+\frac{2(K_{t}-1)}{K_{t}}\frac{\sqrt{a}}{\sqrt{r}}}                         (6-78)

{K}_{f}=\bar{K}_{f}{LN}\left(1,C_{K_{f}}\right)                            (6-79)

\mathrm{K}_{t s}={\frac{1.40{LN}(1,0.15)}{1+(2/{\sqrt{0.125}})\left[(1.4-1)/1.4\right](3/110)}}=1.34{LN}(1,0.15)

 

\tau=\mathrm{K}_{t s}\;\frac{16T}{\pi d^{3}}

 

\tau=1.34[{LN}(1,0.15)]\left[\frac{16(1.4)}{\pi(1)^{3}}\right] =9.55{LN}(1,0.15)\mathrm{~kpsi}

From Eq. (5-43), p. 242:

z=-\frac{\mu_{\mathrm{ln}S}-\mu_{\ln\sigma}}{\left(\hat{\sigma}_{\ln S}^{2}+\hat{\sigma}_{\ln\sigma}^{2}\right)^{1/2}}=-\frac{\ln\left(\frac{\mu_{S}}{\mu_{\sigma}}\sqrt{\frac{1+C_{\sigma}^{2}}{1+C_{s}^{2}}}\right)}{\sqrt{\ln\left[\left(1+C_{s}^{2}\right)\left(1+C_{\sigma}^{2}\right)\right]}}                                (5-43)

z=-\frac{\ln[(22.2/9.5)\sqrt{(1+0.15^{2})/(1+0.195^{2})}}{\sqrt{\ln[(1+0.195^{2})(1+0.15^{2})]}}=-3.43

From Table A-10p_{f}=0.0003

R=1-p_{f}=1-0.0003=0.9997

For a design with completely-reversed torsion of 1400 lbf · in, the reliability is 0.9997. The improvement comes from a smaller stress-concentration factor in torsion. See the note at the end of the solution of Prob. 6-34 for the reason for the phraseology.

Table 6–15
Heywood’s Parameter

\sqrt{a} and coefficients of

variation {{C}}_{K f} for steels

Notch Type

{\sqrt{\alpha}}({\sqrt{\mathrm{in}}}),

S_{Ut} in kpsi

{\sqrt{\alpha}}({\sqrt{\mathrm{mm}}}),

S_{Ut} in Mpa

Coefficient of
Variation C_{KF}
Transverse hole 5/{{S}}_{Ut} 174/{{S}}_{Ut} 0.10
Shoulder 4/{{S}}_{Ut} 139/{{S}}_{U t} 0.11
Groove 3/{{S}}_{Ut} 104/{{S}}_{Ut} 0.15

Related Answered Questions

Question: 6.45

Verified Answer:

Peterson’s notch sensitivity q has very little sta...
Question: 6.37

Verified Answer:

For a non-rotating bar subjected to completely rev...
Question: 6.32

Verified Answer:

Given {S}_{u t}=245{LN}(1,0.0508)\,\mathrm{...