Question 6.37: Repeat Prob. 6–36, with the bar subject to a completely reve......

Repeat Prob. 6–36, with the bar subject to a completely reversed torsional moment of 2400 lbf · in.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

For a non-rotating bar subjected to completely reversed torsion of T_{a}=2400\ {\mathrm{lbf}}\cdot\mathrm{in}

From Prob. 6-36:

S_{e}^{\prime}=29.3{LN}(1,0.138)\,\mathrm{kpsi}

 

{k}_{a}=0.782{{L N}}(1,0.11)

 

k_{b}=0.955

For {k}_{c} use Eq. (6-74):

({k}_{c})_{\mathrm{torsion}}=0.328\bar{S}_{u t}^{0.125}{{L N}}(1,0.125)                                 (6-74)

{k}_{c}=0.328(58)^{0.125}{{L N}}(1,0.125)=0.545{LN}(1,0.125)

 

{S}_{s e}=0.782[{LN}(1,0.11)](0.955)[0.545{LN}(1,0.125)][29.3{LN}(1,0.138)]

 

\bar{S}_{Se}=0.782(0.955)(0.545)(29.3)=11.9\,\mathrm{kpsi}

 

C_{S e}=(0.11^{2}+0.125^{2}+0.138^{2})^{1/2}=0.216

Table A-16d/D=0,a/D=0.1,A=0.92,K_{t s}=1.68

From Eqs. (6-78), (6-79), Table 6-15

\bar{K}_{f}=\frac{K_{t}}{1+\frac{2(K_{t}-1)}{K_{t}}\frac{\sqrt{a}}{\sqrt{r}}}                       (6-78)

{K}_{f}=\bar{K}_{f}{LN}\left(1,C_{K_{f}}\right)                           (6-79)

{K}_{fs}=\frac{1.68{LN}(1,0.10)}{1+(2/\sqrt{0.125})[(1.68-1)/1.68](5/58)}=1.403{LN}(1,0.10)

Table A-16:

J_{\mathrm{net}}={\frac{\pi A D^{4}}{32}}={\frac{\pi(0.92)(1.25^{4})}{32}}=0.2201

 

\tau_{a}={K}_{f s}\,{\frac{T_{a}c}{J_{\mathrm{net}}}}=1.403[{LN}(1,0.10)]\left[\frac{2.4(1.25/2)}{0.2201}\right] =9.56{{LN}}(1,0.10){\mathrm{~kpsi}}

From Eq. (5-43), p. 242:

z=-\frac{\mu_{{\ln} S}-\mu_{{\ln}\sigma}}{\left(\hat{\sigma}_{{\ln}S}^{2}+\hat{\sigma}_{{\ln}\sigma}^{2}\right)^{1/2}}=-\frac{\ln\left(\frac{\mu_{S}}{\mu_{\sigma}}\sqrt{\frac{1+C_{\sigma}^{2}}{1+C_{s}^{2}}}\right)}{\sqrt{\ln\left[\left(1+C_{s}^{2}\right)\left(1+C_{\sigma}^{2}\right)\right]}}                          (5-43)

z=-{\frac{\ln\left[(11.9/9.56){\sqrt{(1+0.10^{2})/(1+0.216^{2})}}\right]}{\sqrt{\ln[(1+0.10^{2})(1+0.216^{2})]}}}=-0.85

Table A-10, p_{f}=0.1977

R=1-p_{f}=1-0.1977=0.80
Table 6–10
Parameters in Marin

Surface Condition Factor

Surface Finish \mathrm{K}_{a}=a S_{U t}^{b}\;\mathrm{LN}(\;1,\;C)
a b Coefficient Variation
kpsi Mpa
{\mathrm{Ground}}^{*} 1.34 1.58 -0.086 0.120
Machined or Cold-rolled 2.67 4.45 -0.265 0.058
Hot-rolled 14.5 58.1 -0.719 0.110
As-forged 39.8 271 -0.995 0.145
*Due to the wide scatter in ground surface data, an alternate function is {k_{a}}=0.878{{LN}}(1,0.120). Note: S_{{Ut}} in kpsi or MPa.
Table 6–15
Heywood’s Parameter

\sqrt{a} and coefficients of

variation {{C}}_{K f} for steels

Notch Type

{\sqrt{\alpha}}({\sqrt{\mathrm{in}}}),

S_{Ut} in kpsi

{\sqrt{\alpha}}({\sqrt{\mathrm{mm}}}),

S_{Ut} in Mpa

Coefficient of
Variation C_{KF}
Transverse hole 5/{{S}}_{Ut} 174/{{S}}_{Ut} 0.10
Shoulder 4/{{S}}_{Ut} 139/{{S}}_{U t} 0.11
Groove 3/{{S}}_{Ut} 104/{{S}}_{Ut} 0.15

Related Answered Questions

Question: 6.45

Verified Answer:

Peterson’s notch sensitivity q has very little sta...
Question: 6.35

Verified Answer:

For completely reversed torsion, {k}_{a}[/l...
Question: 6.32

Verified Answer:

Given {S}_{u t}=245{LN}(1,0.0508)\,\mathrm{...