Question 4.TC.1: Satellite's Orbit Transfer In the near future we ourselves m......

Satellite’s Orbit Transfer

In the near future we ourselves may take part in launching of a satellite which, in point of view of physics, requires only the use of simple mechanics.

(a) A satellite of mass m is presently circling the Earth of mass M in a circular orbit of radius R_{0}. What is the e speed (u_{0}) of mass m in terms of M, R_{0} and the universal gravitation constant G?

(b) We are to put this satellite into a trajectory that will take it to point P at distance R, from the centre of the Earth by increasing (almost instantaneously) its velocity at point Q from u_{0} to u_{1} • What is the value of u_{1} in terms of u_{0} ,R_{0} , R_{1}?

(c) Deduce the minimum value of u_{1} in term of u_{0} that will allow the satellite to leave the Earth’s influence completely.

(d) (Referring to part (b). ) What is the velocity (u_{2} )of the satellite at point P in terms of u_{0}  ,  R_{0} , R_{1} ?

(e) Now, we want to change the orbit of the satellite at point P into a circular orbit of radius R_{1} by raising the value of u_{2} (almost instantaneously) to u_{3}.

What is the magnitude of u_{3} in terms of u_{2} , R_{0} , R_{1}?

(f)

If the satellite is slightly and instantaneously perturbed in the radial direction so that it deviates from its previously perfectly circular orbit of radius R_{1} , derive the period of its oscillation T of r about the mean distance R_{1} .

Hint: Students may make use (if necessary) of the equation of motion of a satellite in orbit:

m{\Big[}{\frac{\mathrm{d}^{2}}{\mathrm{d}t^{2}}}r-{\Big(}{\frac{\mathrm{d}}{\mathrm{d}t}}\theta{\Big)}^{2}r{\Big]}=-G{\frac{M m}{r^{2}}},                                    (1)

and the conservation of angular momentum:

m r^{2}\;{\frac{\mathrm{d}}{\mathrm{dt}}\theta}={\mathrm{constant}}.                                      (2)

(g) Give a rough sketch of the whole perturbed orbit together with the unperturbed one.

fig.4-1
fig.4-2
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
({\bf a})\,\frac{m u_{0}^{2}}{R_{\mathrm{0}}}=\frac{G M m}{R_{\mathrm{0}}^{2}},\;u_{0}=\sqrt{\frac{G M}{R_{\mathrm{0}}}}\,.

(b) Conservation of angular momentum: mu_{1}R_{0} = mu_{2}R_{1}.

Conservation 0f energy:{\frac{1}{2}}m u_{2}^{2}-{\frac{G M m}{R_{1}}}={\frac{1}{2}}m u_{1}^{2}-{\frac{G M m}{R_{0}}}

 

\left[\left(\frac{R_{\mathrm{0}}}{R_{1}}\right)^{2}-1\right]u_{1}^{2}=2G M\left(\frac{1}{R_{1}}-\frac{1}{R_{\mathrm{o}}}\right)

 

\frac{(R_{0}-R_{1})\,(R_{0}+R_{1})}{R_{1}^{2}}\ u_{1}^{2}=2G M\frac{R_{0}-R_{1}}{R_{0}R_{1}}

 

u_{1}=\sqrt{\frac{G{M}}{R_{\scriptscriptstyle0}}}\,\sqrt{\frac{2{R}_{1}}{R_{1}+R_{\scriptscriptstyle0}}}\,=\,u_{\scriptscriptstyle0}\sqrt{\frac{2{R}_{1}}{R_{1}+R_{\scriptscriptstyle0}}}.

 

(c)\operatorname*{lim}_{R_{1}\rightarrow\infty}u_{1}=\sqrt{2}\,u_{0}.

 

(\mathrm{d})\;u_{2}=u_{1}\,{\frac{R_{0}}{R_{1}}}=u_{0}\,{\frac{\sqrt{2}R_{0}}{\sqrt{R_{1}\left(R_{1}+{R}_{0}\right)}}}.

 

\left(\mathbf{e}\right)\,u_{3}={\sqrt{\frac{G M}{R_{\mathrm{1}}}}}={\sqrt{\frac{G M}{R_{\mathrm{0}}}}}\,{\sqrt{\frac{R_{\mathrm{0}}}{R_{\mathrm{1}}}}}=u_{0}{\sqrt{\frac{R_{\mathrm{0}}}{R_{\mathrm{1}}}}}

 

= \sqrt{\frac{R_{0}}{R_{1}}}\sqrt{\frac{R_{1}({R}_{1}+{R}_{0})}{\sqrt{2}R_{0}}}\,u_{2}.

 

u_{3}=u_{2}\sqrt{\frac{R_{1}+{R}_{0}}{2R_{0}}}\,.

(f) Combining equations (1) and (2):

{\frac{\mathrm{d}^{2}}{\mathrm{d}t^{2}}}r-{\frac{C}{m r^{3}}}=-{\frac{G M}{r^{2}}},

and for the circular orbit of radius R_{1} we have \frac{C}{m}=G M R_{1},

hence     {\frac{\mathrm{d}^{2}}{\mathrm{d}t^{2}}}r-{\frac{G M R_{1}}{r^{3}}}=-{\frac{G M}{r^{2}}},

putting r=R_{1}+\eta,{\mathrm{~where~}}\eta\ll R_{1},

\frac{\mathrm{d}^{2}}{\mathrm{d}t}\eta-\frac{G M R_{1}}{R_{1}^{3}\left(1+\frac{\eta}{R_{1}}\right)^{3}}=-\frac{G M}{R_{1}^{2}\left(1+\frac{\eta}{R_{1}}\right)^{2}}

 

{\frac{\mathrm{d}^{2}}{\mathrm{d}t^{2}}}\eta-{\frac{G M}{R_{1}^{2}}}\biggl(1-3\,{\frac{\eta}{R_{1}}}\biggr)\approx-{\frac{G M}{R_{1}^{2}}}\biggl(1-2\,{\frac{\eta}{R_{1}}}\biggr)

 

{\frac{\mathrm{d}^{2}}{\mathrm{d}t}}\eta\approx-{\frac{G M}{R_{1}^{3}}}\eta\quad.

The frequency of oscillation about mean distance is f=\frac{1}{2\pi}\sqrt{\frac{G M}{R_{1}^{3}}}.

The period T={\frac{1}{f}}=2\pi\sqrt{\frac{R_{1}^{3}}{G M}}.

Note that this period is the same as the orbital period.

(g)

fig.4-3
Loading more images...

Related Answered Questions