series circuit has two or more resistors end to end. The total resistance is equal to the sum of the individual resistances (R_{T}=R_{1}+R_{2}). Also, the sum of the voltage drops across all resistors will equal the total supply voltage (V_{S}=V_{R1}+ V_{R2}).
Find the current in the circuit (I), the voltage across R_{1}\left(V_{R1}\right) and the voltage across R_{2}\left(V_{R2}\right) in Figure F–3.
R_{T}=8\,\mathrm{k}\Omega\,+\,2\,\mathrm{k}\Omega\,=\,10\,\mathrm{k}\Omega
I={\frac{10\,\mathrm{V}}{10\,\mathrm{k\Omega}}}=\mathrm{1\,mA}
V_{R1}\,=\,1\,\mathrm{mA}\,\times\,8\,\mathrm{k \Omega}\,=\,8\,\mathrm{V}
V_{R2}=\,1\,\mathrm{mA}\times2\,\mathrm{k}\Omega\,=\,2\,\mathrm{V}
Check:
V_{S}=8\,\mathrm{V}\,+\,2\,\mathrm{V}\,=\,10\,\mathrm{V}
Notice that the voltage across any resistor in the series circuit is proportional to the size of the resistor. That fact is used in developing the voltagedivider equation:
V_{R2}=V_{S}\times\frac{R_{2}}{R_{1}+R_{2}}
=\;10\;\mathrm{V}\times\frac{2\,\mathrm{k}\Omega}{2\,\mathrm{k}\Omega\,+\,8\,\mathrm{k}\Omega}
= 2 \;V