Solving a trigonometric equation linear in Sine and Cosine
Solve the equation: \sin\theta+\cos\theta=1,\quad0\leq\theta\lt 2\pi
Solution A
Attempts to use available identities do not lead to equations that are easy to solve. (Try it yourself.) Therefore, given the form of this equation, square each side.
\sin\theta+\cos\theta=1(\sin\theta+\cos\theta)^{2}=1 Square each side.
\sin^{2}\theta+2\sin\theta\cos\theta+\cos^{2}\theta=1 Remove parentheses.
2\sin\theta\cos\theta=0 \sin^{2}\theta+\cos^{2}\theta=1
\sin\theta \cos\theta=0Setting each factor equal to zero leads to
\sin\theta=0\;\;\;\mathrm{or}\;\;\;\cos\theta=0The apparent solutions are
\displaystyle{\theta=0,\;\;\;\;\;\theta=\pi,\;\;\;\;\;\;\theta={\frac{\pi}{2}},\;\;\;\;\;\;\theta={\frac{3\pi}{2}}}Because both sides of the original equation were squared, these apparent solutions must be checked to see whether any are extraneous.
\theta=0:\quad\sin0+\cos0=0+1=1 A solution
\theta=\pi:\quad\sin \pi+\cos \pi=0+(-1)=-1 Not a solution
\theta=\frac{\pi}{2}:\quad\sin\frac{\pi}{2}+\cos\frac{\pi}{2}=1+0=1 A solution
\theta=\frac{3\pi}{2}:\quad\sin\frac{3\pi}{2}+\cos\frac{3\pi}{2}=-1+0=-1 Not a solution
The values \theta = \pi and \theta={\frac{3\pi}{2}} are extraneous. The solution set is \left\{0,{\frac{\pi}{2}}\right\}.
Solution B
Start with the equation
\sin\theta+\cos\theta=1and divide each side by \sqrt{2}. (The reason for this choice will become apparent shortly.) Then
{\frac{1}{\sqrt{2}}}\sin\theta+{\frac{1}{\sqrt{2}}}\cos\theta={\frac{1}{\sqrt{2}}}The left side now resembles the formula for the sine of the sum of two angles, one of which is \theta. The other angle is unknown (call it Ø.) Then
\sin\left(\theta+\phi\right)\,=\,\sin\theta\cos\phi\,+\,\cos\theta\sin\phi\,=\,{\frac{1}{\sqrt{2}}}={\frac{\sqrt{2}}{2}} (8)
where
\cos\phi={\frac{1}{\sqrt{2}}}={\frac{\sqrt{2}}{2}}\qquad\sin\phi={\frac{1}{\sqrt{2}}}={\frac{\sqrt{2}}{2}}\qquad0\leq\phi\lt 2\piThe angle \phi is therefore \frac{\pi}{4}. As a result, equation (8) becomes
\sin\left(\theta+{\frac{\pi}{4}}\right)={\frac{\sqrt{2}}{2}}In the interval [0,2\pi), there are two angles whose sine is \frac{\sqrt{2}}{2}: \frac{\pi}{4} and \frac{3\pi}{4}. See Figure 29. As a result,
\theta+{\frac{\pi}{4}}={\frac{\pi}{4}} or \theta+{\frac{\pi}{4}}={\frac{3\pi}{4}}
\theta=0 or \theta=\frac{\pi}{2}
The solution set is \left\{0,{\frac{\pi}{2}}\right\}.