Suppose it is relatively easy to simulate from the distributions Fi , i = 1, 2, . . . , n. If n is small, how can we simulate from
F(x) =\sum\limits^n_{i=1}P_i\, F_i(x), ~~~P_i\geqslant0 \quad \sum\limits_i P_i =1?Give a method for simulating from
F(x) =\begin{cases}\frac{1 − e^{−2x} + 2x}{3},\quad , 0 < x < 1\\ \\ \frac{3 − e^{−2x}}{3} \qquad\quad , 1 < x < ∞\end{cases}(a) Let U be a random number. If \sum_{j=1}^{i-1} P_{j}<U \leqslant \sum_{j=1}^{i} P_{j} then simulate from Fi. (In the preceding \sum_{j=1}^{i-1} P_{j} \equiv 0 when i=1.)
(b) Note that
F(x)=\frac{1}{3} F_{1}(x)+\frac{2}{3} F_{2}(x)where
\begin{aligned}& F_{1}(x)=1-e^{2 x}, \quad 0<x<\infty \\& F_{2}(x)= \begin{cases}x, & 0<x<1 \\1, & 1<x\end{cases}\end{aligned}Hence, using part (a), let U1, U2, U3 be random numbers and set
X= \begin{cases}\frac{-\log U_{2}}{2}, & \text { if } U_{1}<\frac{1}{3} \\ U_{3}, & \text { if } U_{1}>\frac{1}{3}\end{cases}The preceding uses the fact that −log U2/2 is exponential with rate 2.