Suppose that some amount of oil is spilled onto the surface of an ocean (for instance, due to an oil-tanker accident). The oil spot then spreads away on the sea surface. The radius, R, of the oil spot in kilometers, 24 hours after the accident, has density function
f(r) = \frac{3}{4}\left\{1 − (20 − r)^2 \right\}, \quad 19 ≤ r ≤ 21.Assuming that the area covered by the oil spot is circular, find the density function for the size of this area.
Let Y be the random variable denoting the size of the area. Then, R and Y are related by
Y = πR².
Let also F_R and F_Y denote the distribution functions of R and Y, respectively. Then, we have, for any y ≥ 0,
P(Y\leq y)=P(\pi R^{2}\leq y)=P\left(R^{2}\leq{\frac{y}{\pi}}\right)=P\left(-{\sqrt{\frac{y}{\pi}}}\leq R\leq{\sqrt{\frac{y}{\pi}}}\right)=F_{R}\left({\sqrt{\frac{y}{\pi}}}\right)-F_{R}\left(-{\sqrt{\frac{y}{\pi}}}\right).But the range of the variable R is the interval [19, 21], which means that F_R(r) = 0 for r < 19 and F_R(r) = 1 for r > 21. This implies, in particular, that the last term on the right-hand side above is zero. Taking this into account, we see that we can express the function F_Y as follows:
F_Y(y)=F_R\left(\sqrt{\frac{y}{\pi} } \right) = \begin{cases} 0, \qquad \qquad \qquad \sqrt{\frac{y}{\pi} } \lt 19, \\ F_R\left(\sqrt{\frac{y}{\pi} } \right) , \qquad 19 \leq \sqrt{\frac{y}{\pi} } \leq 21, \\ 1, \qquad \qquad \qquad \sqrt{\frac{y}{\pi} } \gt 21, \end{cases}or, upon simplifying the conditions on the right, we can write this in the form
F_Y(y)=F_R\left(\sqrt{\frac{y}{\pi} } \right) = \begin{cases} 0, \qquad \qquad \qquad y \lt 361 \pi, \\ F_R\left(\sqrt{\frac{y}{\pi} } \right) , \qquad 361 \pi \leq y \leq 441 \pi, \\ 1, \qquad \qquad \qquad y \gt 441 \pi, \end{cases}Differentiating the last expression with respect to y, we find that
f_{Y}(y)=F_{Y}^{\prime}(y)=0,\quad{\mathrm{for~}}y\lt 361\pi{\mathrm{~or~}}y\gt 441\pi,while for y in the range [361π, 441π] we get
f_{Y}(y)=F_{Y}^{\prime}(y)=\left[F_{R}\left({\sqrt{\frac{y}{\pi}}}\right)\right]^{\prime}=F_{R}^{\prime}\left({\sqrt{\frac{y}{\pi}}}\right)\cdot\left({\sqrt{\frac{y}{\pi}}}\right)^{\prime}=f_{R}\left({\sqrt{\frac{y}{\pi}}}\right)\cdot{\frac{1}{2{\sqrt{\pi y}}}}Thus, we obtain finally the required density to be
f_{Y}(y)=\frac{3}{8\sqrt{\pi}}\ y^{-1/2}\left[1-\left(20-\sqrt{\frac{y}{\pi}}\right)^{2}\right],\quad361\pi\leq y\leq441\pi.