The Geneva mechanism shown is used in many counting instruments and in other applications where an intermittent rotary motion is required. Disk D rotates with a constant counterclockwise angular velocity V_D of 10 rad/s. A pin P is attached to disk D and slides along one of several slots cut in disk S. It is desirable that the angular velocity of disk S be zero as the pin enters and leaves each slot; in the case of four slots, this will occur if the distance between the centers of the disks is l=1 \overline{2} R.
At the instant when f = 150°, determine (a) the angular velocity of disk S, (b) the velocity of pin P relative to disk S.
We solve triangle OPB, which corresponds to the position f = 150°. Using the law of cosines, we write
r^{2}=R^{2}+l^{2}-2 R l~ \cos 30^{\circ}=0.551 R^{2} \quad\quad\quad r=0.742 R=37.1 \mathrm{~mm}From the law of sines,
\frac{\sin \mathrm{b}}{R}=\frac{\sin 30^{\circ}}{r} \quad\quad \sin \mathrm{b}=\frac{\sin 30^{\circ}}{0.742} \quad\quad \mathrm{~b}=42.4^{\circ}Since pin P is attached to disk D, and since disk D rotates about point B, the magnitude of the absolute velocity of P is
\begin{aligned}v_{P}=R \mathrm{v}_{D}=(50 \mathrm{~mm})(10 ~\mathrm{rad} / \mathrm{s}) & =500 \mathrm{~mm} / \mathrm{s} \\\mathrm{v}_{P} & =500 \mathrm{~mm} / \mathrm{s} ~\mathrm{d} ~60^{\circ}\end{aligned}We consider now the motion of pin P along the slot in disk S. Denoting by P^{\prime} the point of disk S which coincides with P at the instant considered and selecting a rotating frame S attached to disk S, we write
\text {v}_{P}=\text{v}_{P^{\prime}}+\text{v}_{P / S}Noting that \text{v}_{P^{\prime}} is perpendicular to the radius OP and that \text{v}_{P / S} is directed along the slot, we draw the velocity triangle corresponding to the equation above. From the triangle, we compute
g = 90° – 42.4° – 30° = 17.6°
\begin{aligned}v_{P^{\prime}} & =v_{P} \sin \mathrm{g}=(500 \mathrm{~mm} / \mathrm{s}) \sin 17.6^{\circ} \\\mathrm{v}_{P^{\prime}} & =151.2 \mathrm{~mm} / \mathrm{s} ~\mathrm{f}~ 42.4^{\circ} \\v_{P / S} & =v_{P} \cos \mathrm{g}=(500 \mathrm{~mm} / \mathrm{s}) \cos 17.6^{\circ} \\& \quad \mathrm{v}_{P / S}=\mathrm{v}_{P / S}=477 \mathrm{~mm} / \mathrm{s} \text { d } 42.4^{\circ}\end{aligned}Since \text{v}_{P^{\prime}} is perpendicular to the radius OP, we write
\begin{aligned}v_{P^{\prime}}=r \mathrm{v}_{S} \quad 151.2 \mathrm{~mm} / \mathrm{s}= & (37.1 \mathrm{~mm}) \mathrm{v}_{S} \\& \mathrm V_{S}=\mathrm V_{S}=4.08 ~\mathrm{rad} / \mathrm{s}~ \mathrm i\end{aligned}