The joint density of X and Y is given by
f(x,y)=\begin{cases}\frac{1}{2}ye^{-xy},&0\lt x\lt\infty,0\lt y\lt 2\\0,&\text{otherwise}\end{cases}What is E[e^{X/2}|Y=1]?
The conditional density of X, given that Y = 1, is given by
f_{X\mid Y}(x\mid1)={\frac{f(x,1)}{f_{Y}(1)}}
{}=\frac{\frac{1}{2}e^{-x}}{\int_{0}^{\infty}\frac{1}{2}e^{-x}\,d x}=e^{-x}
Hence, by Proposition 2.1,
E{\Bigl[}e^{X/2}|Y=1{\Bigr]}=\int_{0}^{\infty}e^{x/2}f_{X|Y}(x|1)\;d x
=\int_{0}^{\infty}e^{x/2}e^{-x}\,d x
=2