Question 15.8: The linkage ABDE moves in the vertical plane. Knowing that i......

The linkage ABDE moves in the vertical plane. Knowing that in the position shown crank AB has a constant angular velocity \text V_1 of 20 rad/s counterclockwise, determine the angular velocities and angular accelerations of the connecting rod BD and of the crank DE.

15.8.1
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

This problem could be solved by the method used in Sample Prob. 15.7. In this case, however, the vector approach will be used. The position vectors {r}_{B}, {r}_{D},~ \text{and}~ {r}_{D / B} are chosen as shown in the sketch.

Velocities. Since the motion of each element of the linkage is contained in the plane of the figure, we have

\text{V}_{A B}=\text{v}_{A B} {k}=(20 ~\mathrm{rad} / \mathrm{s}) {k} \quad\quad \text{V}_{B D}=\text{v}_{B D} {k} \quad\quad \text{V}_{D E}=\text{v}_{D E} \mathbf{k}

where k is a unit vector pointing out of the paper. We now write

\begin{aligned}\text{v}_{D} & =\text{v}_{B}+\text{v}_{D / B} \\\text{v}_{D E} {k} \times {r}_{D} & =\text{v}_{A B} {k} \times {r}_{B}+\text{v}_{B D} {k} \times {r}_{D / B} \\\text{v}_{D E} {k} \times(-17 {i}+17 {j}) & =20 {k} \times(8 {i}+14 {j})+\text{v}_{B D} {k} \times(12 {i}+3 {j}) \\-17 \text{v}_{D E} {j}-17\text{v}_{D E} {i} & =160 {j}-280 {i}+12\text{v}_{B D} {j}-3\text{v}_{B D}{i}\end{aligned}

Equating the coefficients of the unit vectors i and j, we obtain the following two scalar equations:

\begin{aligned}& -17 \text{v}_{D E}=-280-3 \text{v}_{B D} \\& -17 \text{v}_{D E}=+160+12 \text{v}_{B D} \\& \mathrm{~V}_{B D}=-(29.33 ~\mathrm{rad} / \mathrm{s}) {k} \quad\quad \mathrm{V}_{D E}=(11.29~\mathrm{rad} / \mathrm{s}){k}\end{aligned}

Accelerations. Noting that at the instant considered crank AB has a constant angular velocity, we write

\mathrm{A}_{A B}=0 \quad\quad \mathrm{~A}_{B D}=\mathrm{a}_{B D} {k} \quad\quad \mathrm{A}_{D E}=\mathrm{a}_{D E} {k} \\ {a}_{D}={a}_{B}+{a}_{D / B}                                        (1)

Each term of Eq. (1) is evaluated separately:

a _D= a _{D E} k \times r _D-\text v _{D E}^2 r _D \\ \\= a _{D E} k \times(-17 i +17 j )-(11.29)^2(-17 i +17 j ) \\ \\ =-17 a _{D E} j -17 a _{D E} i +2170 i -2170 j

 

a _B= a _{A B} k \times r _B- \text v _{A B}^2 r _B=0-(20)^2(8 i +14 j )

= -3200i – 5600j

a _{D / B}= a _{B D} k \times r _{D / B}-\text v _{B D}^2 r _{D / B} \\ \\ = a _{B D} k \times(12 i +3 j )-(29.33)^2(12 i +3 j ) \\ \\ =12 a _{B D} j -3 a _{B D} i -10,320 i -2580 j

Substituting into Eq. (1) and equating the coefficients of i and j, we obtain

\begin{aligned}& -17 \mathrm{a}_{D E}+3 \mathrm{a}_{B D}=-15,690 \\& -17 \mathrm{a}_{D E}-12 \mathrm{a}_{B D}=-6010 \\& \mathrm{~A}_{B D}=-\left(645~ \mathrm{rad} / \mathrm{s}^{2}\right) {k} \quad\quad \mathrm{A}_{D E}=\left(809~ \mathrm{rad} / \mathrm{s}^{2}\right) {k}\end{aligned}
15.8.2
Loading more images...

Related Answered Questions

Question: 15.5

Verified Answer:

Motion of Crank AB. Referring to Sample Prob. 15.3...
Question: 15.4

Verified Answer:

a. Angular Velocity of the Gear. Since the gear ro...