Question 11.APP.3: The Normal Case: Testing Hypotheses About the Mean Refer to ......

The Normal Case: Testing Hypotheses About the Mean Refer to Example 11 and observe that T(x) = x and Q(θ) is strictly increasing. Therefore the appropriate test for testing H_{0}\colon\theta\ \leq\theta_{0} against H_{A}\!: \theta\gt \theta_{0} at level of significance α is given by (5) and (6)

\varphi(x_{1},\dots,x_{n})= \begin{cases} 1 & {\mathrm{if~}}V(x_1,\dots,x_n)\gt C\\ \gamma & {\mathrm{if~}}V(x_1,\dots,x_n)=C \\ 0 & {\mathrm{if~}}V(x_1,\dots,x_n) \lt C, \end{cases} \qquad(5)\\ E_{\theta_{0}}\varphi(X_{1}{,\,\dots\,,\,X_{n}})= P_{\theta_{0}}[V(X_{1}{,\,\dots\,,X_{n}})\gt C] \left.+{\gamma}P_{\theta_{0}}[{V}(X_{1}{,\dots,X_{n}})={ C}]=\alpha.\right.\qquad\left(6\right)

with \gamma=0. That is,

\varphi(x_{1},\dots,x_{n})= \begin{cases} 1 & {\mathrm{if~}}\textstyle\sum_{i=1}^{n}x_{i}\gt C\\ 0 & {\mathrm{otherwise}}, \end{cases} \qquad(29)

or

\varphi(x_{1},\dots,x_{n})= \begin{cases} 1 & {\mathrm{if~}} \frac{\sqrt{n}(\bar x -\theta_0)}{\sigma}\gt z_\alpha\\ 0 & {\mathrm{otherwise}}, \end{cases} \qquad(29^\prime)

because

\alpha=E_{\theta_{0}}\varphi(X_{1},\ldots,X_{n})=P_{\theta_{0}}\left(\sum\limits_{i=1}^{n}X_{i}\gt C\right) =P_{\theta_{0}}\bigg[{\frac{\sqrt{n}(\bar{X}-\theta_{0})}{\sigma}}\gt {\frac{C-n\theta_{0}}{\sigma\sqrt{n}}}\bigg],

so that \frac{C-n\theta_{0}}{\sigma{\sqrt{n}}}=z_{\alpha} and therefore

C=n\theta_{0}+z_{\alpha}\sigma\sqrt{n};\qquad\qquad\qquad\qquad\qquad\qquad(30)

this is so, because {\frac{\sqrt{n}({\bar{X}}-\theta_{0})}{\sigma}}=Z\sim N(0,1), and recall that P(Z\gt {z}_{\alpha})=\alpha.
The power of the test is given by:

\pi_{\varphi}(\theta)=1-\Phi\!\!\left[z_{\alpha}+\frac{\sqrt{n}(\theta_{0}-\theta)}{\sigma}\right]\!,\quad\theta\gt \theta_{0},\qquad\qquad(31)

because, on account of (30):

\pi_{\varphi}(\theta)=P_{\theta}{\Biggl(}\sum\limits_{i=1}^{n}X_{i}\gt C\Biggr)=P_{\theta}{\Biggl[}\sum\limits_{i=1}^{n}X_{i}-n\theta\gt n(\theta_{0}-\theta)+{z}_{\alpha}{\sigma}{\sqrt{n}}{\Biggr]} =P_{\theta}\left[{\frac{\sum_{i=1}^{n}X_{i}-n\theta}{\sigma\sqrt{n}}}\gt z_{\alpha}+{\frac{\sqrt{n}(\theta_{0}-\theta)}{\sigma}}\right] =P\bigg[Z\gt \ z_{\alpha}+\frac{\sqrt{n}(\theta_{0}-\theta)}{\sigma}\bigg]=1-\Phi\bigg[z_{\alpha}+\frac{\sqrt{n}(\theta_{0}-\theta)}{\sigma}\bigg],

since {\frac{\Sigma_{i=1}^{n}X_{i-}n\theta}{\sigma{\sqrt{n}}}}=Z\sim N(0,1).

N u m e r i c a l ~E xam p l e In reference to Example 5, focus on patients treated with the new treatment, and call Y\sim N(\theta,\sigma^{2})\;(\sigma known) the survival time. On the basis of observations on n = 25 such patients, we wish to test the hypothesis H_{0}\colon\theta\leq{{5}} (in years) against H_{A}\colon\theta\gt {{5}} at level of significance α = 0.01. For simplicity, take \sigma = 1.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Here z_{\alpha}=z_{0.01}=2.33, so that C = 25 × 5 + 2.33 × 1 × 5 = 136.65. Thus, reject \textstyle H_{0} if the total of survival years is >136.65, and accept \textstyle H_{0} otherwise.
The power of the test is given by (31) and is:

 For \theta=5.5,\pi_{\varphi }(5.5)=1 – \Phi[2.33+5(5-5.5)]=1-\Phi(-0.17)

=\Phi(0.17)=0.567495;

 and for \theta=6,\pi_{\varphi}(6)=1-\Phi[2.33+{{5}}(6-{{5}}.{{5}})]=1-\Phi(-2.67)

=\Phi(2.67)=0.996207.

If we suppose that the observed value of \textstyle\sum_{i=1}^{25}x_{i}is equal to 138, then the P-value is P(\textstyle \sum_{i=1}^{25}X_{i}\gt 138)=1-\Phi({\textstyle{\frac{138-125}{5}}})=\,1- \Phi(2.6)=\,1-0.995339=0.004661, so that the result is highly statistically significant.

f11.5
Loading more images...

Related Answered Questions

Question: 11.APP.5

Verified Answer:

Here n\theta_{1}=2{5},\,n\theta_{2}=7{5},[/...
Question: 11.APP.4

Verified Answer:

Here \chi_{n;1-\alpha}^{2}~=~\chi_{40;0.975...
Question: 11.APP.1

Verified Answer:

Here, for \theta=\theta_{0},\,X\sim B(25,~0...
Question: 11.15

Verified Answer:

Here L(\theta\mid \pmb x)=\theta^{n}e^{-\th...
Question: 11.14

Verified Answer:

First, f(\cdot;\theta) is a p.d.f.,...
Question: 11.13

Verified Answer:

In (27), P_{\theta_{0}}(X\leq C-1)+\gamma P...
Question: 11.11

Verified Answer:

In fact, f(x;\theta)={\frac{1}{{\sqrt{2\pi}...
Question: 11.12

Verified Answer:

Here f(x;\theta)={\frac{1}{{\sqrt{2\pi\thet...
Question: 11.10

Verified Answer:

Here f(x;\theta)=\frac{e^{-\theta}\theta^{x...
Question: 11.8

Verified Answer:

First, the function given is a p.d.f., because it ...