Question 3.12: Two forces of the same magnitude P act on a cube of side a a......

Two forces of the same magnitude P act on a cube of side a as shown. Replace the two forces by an equivalent wrench, and determine ( a ) the magnitude and direction of the resultant force R , ( b ) the pitch of the wrench, ( c ) the point where the axis of the wrench intersects the yz plane.

3.12.1
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Equivalent Force-Couple System at O . We first determine the equivalent force-couple system at the origin O . We observe that the position vectors of the points of application E and D of the two given forces are {r}_{E}\,=a \mathrm{i }\ + a \mathrm {j} \,\operatorname{and}\, {r}_{D}~=~a \mathrm{j~}+~a\mathrm{k}. The resultant R of the two forces and their moment resultant {M}_{O}^{R} about O are

\mathrm{R}=\mathrm{F}_{1}+\mathrm{F}_{2}=P\mathrm{i}+P\mathrm{j}=P(\mathrm{i}+\mathrm{j})                                          (1)

{M}_{O}^{R}~=~ {r}_{E}~ \times ~{F}_{1} ~+~ {r}_{D}~\times~{F}_{2}~=(a\mathrm{i}~+~a\mathrm{{j}}~)\times~ P\mathrm{i}~+~(a\mathrm{j}~+~a\mathrm{k})~\times ~P \mathrm{j} \\ \\ ~~~~~=\,-P a\mathrm{k}-P a\mathrm{i}=\,-P a(\mathrm{i}\,+\,\mathrm{k})                                          (2)

a. Resultant Force R. It follows from Eq. (1) and the adjoining sketch that the resultant force R has the magnitude R=P\,1\,{\bar 2}, lies in the xy plane, and forms angles of 45° with the x and y axes. Thus

R\,=\,P\,1\,{\overline{{2}}}\qquad \mathrm u_{x}\,=\, \mathrm u_{y}\,=\,45^{\circ}\qquad \mathrm u_{z}\,=\,90^{\circ}

b. Pitch of Wrench. Recalling formula (3.62)

p=\frac{M_{1}}{R}=\frac{{R}\cdot{M}_{O}^{R}}{R^{2}}                                                    (3.62)

of Sec. 3.21 and Eqs. (1) and (2) above, we write

p={\frac{ {R}\cdot {M}_{O}^{R}}{R^{2}}}={\frac{P(\mathrm{i}+\mathrm{j})\cdot(-P a)(\mathrm{i}+\mathrm{k})}{(P2\bar{2} )^{2}}}={\frac{-P^{2}a(1+0+0)}{2P^{2}}}\ p=-{\frac{a}{2}}

c. Axis of Wrench. It follows from the above and from Eq. (3.61)

{M}_{1}=\,p{R}                                            (3.61)

that the wrench consists of the force R found in (1) and the couple vector

{M}_{1~}=~p {R}~=~ -{\frac{a}{2}}P~(\mathrm{ {i}}~+~\mathrm{ {j}})\,=\,-{\frac{P a}{2}}~\left(\mathrm{{i}}~+~\mathrm{{j}}\right)                                            (3)

To find the point where the axis of the wrench intersects the yz plane, we express that the moment of the wrench about O is equal to the moment resultant {M}_{O}^{R} of the original system:

{M}_{1}+ {r}\times {R}= {M}_{O}^{\mathrm{R}}

or, noting that r = y j + z k and substituting for R, {M}_{O}^{R} , and {M}_{1} from Eqs. (1), (2), and (3),

-{\frac{P a}{2}}(\mathrm{ {i}}+\mathrm{j})\,+\,(y\mathrm{ {j}}+\,z\mathrm{ {k}})\,\times\,P(\mathrm{ {i}}+\mathrm{ {j}})\,=\,-P a(\mathrm{ {i}}\,+\,\mathrm{ {k}}) \\ \\ -{\frac{P a}{2}}{\mathrm i}-{\frac{P a}{2}}{\mathrm{ {j}}}-P y{\mathrm{k}}+P z{\mathrm{j}}-P z{ {\mathrm{i}}}=-P a{\mathrm i}-P a{\mathrm{k}}

Equating the coefficients of k , and then the coefficients of j , we find
y = a                            z = a/2

3.12.2
3.12.3
Loading more images...

Related Answered Questions

Question: 3.6

Verified Answer:

Our computations will be simplified if we attach t...
Question: 3.3

Verified Answer:

The force is replaced by two components, one compo...
Question: 3.2

Verified Answer:

The moment {M}_{B} of the force F a...