Use Cramer’s rule to solve the system
\left\{\begin{array}{l}2 x-3 y=-4 \\5 x+7 y=1\end{array}\right.
System of equations:
Equation 1: 2x – 3y = -4
Equation 2: 5x + 7y = 1
The determinant of the coefficient matrix is
|D|=\left|\begin{array}{rr}2 & -3 \\5 & 7\end{array}\right|=29\text {Hence,} \quad x=\frac{\left|D_x\right|}{|D|}=\frac{-25}{29}, \quad y=\frac{\left|D_y\right|}{|D|}=\frac{22}{29} .
Thus, the system has the unique solution \left(-\frac{25}{29}, \frac{22}{29}\right).