(Weibull distribution) Let X be a continuous random variable with
f(x)= \begin{cases} \mathrm{e}^{-x}, \quad x \gt 0, \\ 0, \qquad x \leq 0. \end{cases}Obtain the density of the random variable
Y=\alpha X^{\beta}.where ๐ผ > 0 and ๐ฝ > 0 are arbitrary constants.
We apply the formula
f_{Y}(\mathrm y)=|(\mathrm g^{-1})^{\prime}(\mathrm y)|f(\mathrm g^{-1}(\mathrm y))\qquad\qquad\qquad\qquad(7.19)from Proposition 6.2, where the function \mathrm g is defined by \mathrm g(x)=\alpha x^{\beta}.
The derivative of this function is
\mathrm g^{\prime}(x)=\alpha\beta x^{\beta-1},which is positive for x > 0, and so \mathrm g is a strictly increasing function. In order to find the inverse function, \mathrm g^{-1}, we solve the equation \mathrm g(x) = \mathrm y. This gives
\alpha x^{\beta}=\mathrm y\iff x^{\beta}={\frac{\mathrm y}{\alpha}}\iff x=\left({\frac{\mathrm y}{\alpha}}\right)^{1/\beta}.Therefore,
(\mathrm g^{-1})(\mathrm y)=\left(\frac{\mathrm y}{\alpha}\right)^{1/\beta}.The derivative of this function, with respect to y, is
(\mathrm g^{-1})^{\prime}(\mathrm y)={\frac{1}{\beta}}\cdot{\frac{\mathrm y^{1/\beta-1}}{\alpha^{1/\beta}}}.We thus see from (7.19) that the density of Y is
f_{Y}(\mathrm y)=\left|{\frac{1}{\beta}}\cdot{\frac{\mathrm y^{1/\beta-1}}{\alpha^{1/\beta}}}\right|\exp\left\{-\left({\frac{\mathrm y}{\alpha}}\right)^{1/\beta}\right\}=\frac{1}{\beta\alpha^{1/\beta}}\cdot \mathrm y^{1/\beta-1}\cdot\exp\left\{-\left(\frac{\mathrm y}{\alpha}\right)^{1/\beta}\right\},\quad \mathrm y\gt 0.This distribution is known as the Weibull distribution, after the famous Swedish mathematician Waloddi Weibull.