Write and test a computer subroutine or procedure that implements Eqs. (6–76) and (6–77), returning {\bar{q}},{\hat{\sigma}}_{q}, and {{C}}_{q}.
{q}={\frac{{K}_{f}-1}{K_{t}-1}} (6-76)
{q}={LN}\left({\frac{{\bar{K}}_{f}-1}{K_{t}-1}},{\frac{C{\bar{K}}_{f}}{K_{t}-1}}\right)where C=C_{K f} and
\begin{array}{l}{{\bar{q}=\frac{\bar{K}_{f}-1}{K_{t}-1}}}\\{{{\hat{\sigma}}_{q}={\frac{C{\bar{K}}_{f}}{K_{t}-1}}}}\\{{C_{q}={\frac{C\bar{K}_{f}}{\bar{K}_{f}-1}}}}\end{array} (6-77)
Peterson’s notch sensitivity q has very little statistical basis. This subroutine can be used to show the variation in q, which is not apparent to those who embrace a deterministic q.